
No. 23/52/2006-R&D 

PROJECT CO~PLETION REPORT 
Submitted to 

Indian National Committee on Hydrology (INCOH), Roorkee 

PPMujumdar 
D. N agesh Kumar 

V. V. Srinivas 

Department of Civil Engineering 
Indian Institute of Science 

Bangalore- 560 012 

May2009 

J 



Title 

Sections 

Contents 

1. Name and address ofthe institute 

2. Name and address of the P.I. 

3. Title of the Scheme 

4. Financial Details 

5. Original Objectives and Methodology as 

in the Sanctioned Proposal 

6. Any changes in the objectives during the 

operation of the scheme 

7. Data Collected and Used in the Analysis, 

with sources of data 

8. Methodology Followed 

8.1 Statistical downscaling of GCM simulations to streamflow 

using relevance vector machine 

8 .1.1 Data and input to vector machine 

8.1 .2 Training and testing with support vector 

machine 

8.1.3 Relevance vector machine 

8.1.3.1 Training and testing with RVM 

8.1.4 Future streamflow projection 

8.1.5 Remarks 

8.2 Uncertainties due to GCMs and Climate 

Scenarios in Projecting Mahanadi Streamflow 

8.2.1 Data and Methods 

8.2.1 .1 Study Area and Observed 

Page No 

1 

1 

1 

1 

1 

6 

7 

10 

10 

14 

18 

21 

25 

27 

32 

33 

37 

Streamflow Data 38 

8.2.1.2 Development of the Downscaling 

Model 39 

11 



8.2.1.3 Prediction ofFuture 

Streamflow using GCM Data 

8.2.1.4 Modeling Uncertainty with 

Possibility Theory 

8.2.2 Results and Discussion 

'i.2.2.1 Predicted Streamflow for 1961-1990 

using Reanalysis Data 

8.2.2.2 Predicted Streamflow using GCM data 

8.2.2.3 Possibilistic Modeling Results 

8.2.2.4 Discussions 

8.2.3 Remarks 

8.3 Climate Change Impacts on Meteorologic 

Droughts in the Orissa Meteorologic 

Sub-Division 

8.3.1 Data Extraction and Statistical Downscaling 

8.3.2 Drought Indicators 

8.3 .2.1 Standardized Precipitation Index 

8.3.3 Modeling GCM and Scenario Uncertainty 

8.3.3.1 Assumption ofNormal Distribution 

8.3.3.2 Kernel Density Estimation 

8.3.3.3 Method of Orthonormal Series 

8.3.4 General Observations 

8.3.5 Remarks 

8.4 Streamflow Projections for Malaprabha 

River Basin for IPCC SRES Scenarios using 

SVM Based Downscaling and SWAT Model 

8.4.1 Study region fd data used 

8.4.2 Methodology 

8.4.2.1 Downscaling LSAV to streamflows 

through SWAT model 

8.4.2.2 Downscaling LSAV to streamflows 

42 

45 

48 

48 

48 

50 

54 

59 

60 

65 

74 

75 

77 

79 

81 

84 

87 

89 

89 

92 

94 

95 

lll 



using SVM based empirical 

model (SBEM) 

8.4.2.3 Downscaling streamflows using 

deterministic downscaling 

model (DDSM) 

8.4.2.4 Downscaling streamflows using 

two-stage deterministic downscaling 

model (TSDDSM) 

8.4.2.5 Least-Square Support Vector 

Machine (LS-SVM) 

8.4.2.6 Statistical performance measures 

8.4.2.7 Selecting predictor variables 

for case study 

8.4.2.8 Results 

8.4.2.9 Summary 

9. Conclusions and Recommendations for 

Future Studies 

10. Publications Resulting from the Work 

Carried out in the Project 

Appendix 1. Support vector regression 

Appendix 2. Kernel functions 

Appendix 3: Algorithm for Density Estimation 

using Orthonormal series 

Appendix 4: Financial Details 

References 

102 

102 

103 

103 

106 

107 

109 

128 

129 

132 

134 

136 

137 

141 

142 

lV 



Assessment of Water Resources under Climate Change 
Scenarios at River Basin Scale 

No. 23/52/2006-R&D 

1. Name and Address of the Institute: Indian Institute of Science 

Bangalore 560 012 

2. Name and Address of the P.l: 

3. Title of the Scheme 

4. Financial Details 

Prof. P. P. Mujumdar 

Professor and Chairman 

Department of Civil Engineering 

Indian Institute of Science 

Bangalore 560 012 

Ph : (080) 2293 2323; 2293 2669 (Off) 

2360 2668 (Res) 

Fax : (080) 2360 0404; 2360 0290 

Assessment of Water Resources under 
Climate Change Scenarios at River Basin 
Scale 

Pl. see Appendix 4. 

5. Original Objectives and Methodology as in the Sanctioned Proposal 

(a) Objectives (Reproduced from the sanctioned proposal): 

The following are the approved objectives of the project. 

1. To analyze long-term rainfall and runoff processes, water demands and extreme 

hydrological events in Mahanadi and Krishna river basins of India. 

2. To identify a set of climate variables affecting the magnitude, temporal and 

spatial variability of streamflow and evapotranspiration 

3. To develop stochastic/statistical relationships between the climate variables and 

the two hydrologic variables (streamflow and evapotranspiration) for the two river basins. 

4. To construct long term future hydrologic scenarios by downscaling GCM outputs 

to hydrologic variables at basin scale for a diverse range of climate change scenarios. 
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5. To study the implications of climate change on water resources in the two river 

basins in terms of changes in water availability, water demands, and magnitude and 

frequency of hydrologic extremes. 

6. To suggest measures for sustainable management of surface water resources in 

the selected river basins, based on key findings, and 

7. To provide guidelines to the policy makers regarding adaptation of water resource 

projects to mitigate the impact of climate change. 

(b) Methodology Proposed (reproduced from the sanctioned proposal) 

The broad methodology consists of (a) carrying out a base line study on the 

hydrology of two river basins situated in different hydro-climatic regions in the country, 

(b) identifying a set of climate variables that may have influence on the precipitation, 

runoff and evapotranspiration in the basins, (c) establishing statistical relationships 

between the climate and the hydrologic variables, (d) developing downscaling models to 

scale down the GCM outputs to basin scale, (e) generating future plausible hydrologic 

scenarios corresponding to a number of GCM scenarios, and (f) assessing the 

implications for water availability and water use in the river basins, with a view to 

provide measures for sustainable management of surface water resources. 

The following steps indicate the specific methodology to be adopted in the project. 

1. The Mahanadi and the Krishna river basins will be chosen as pilot case studies to 

develop and demonstrate methodologies to assess the climate change impact on water 

availability. These two basins are of reasonably large size and would enable development 

of downscaling models from the GCM outputs. The Mahanadi basin is mainly flood 

prone, and the Krishna basin is predominantly drought prone, thus together providing an 

opportunity to develop an understanding of the climate change implications on water 

availability in two hydrologically extreme situations. The investigators have a reasonably 

good acquaintance with the two river basins through their earlier research. A significant 

amount of data needed for the proposed study, however, is not available with the 

investigators and needs to be collected. It is expected that all hydrologic data would be 

made available through the International Hydrology Program (IHP), by National Institute 
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of Hydrology (NIH). The following hydrologic and physical data will be collated for the 

two basins: (a) Precipitation and streamflow data, (b) Flood magnitudes and frequencies 

(b) Evaporation (or evapotranspiration) data at several locations in the basins, (c) Planned 

cropping patterns (d) Seasonal water utilisations, (e) Details of all major control 

structures (such as storage reservoirs) in the basins, and (f) Any other data useful for the 

studies. It is emphasized that collection of data would not be a major activity of the 

proposed project, and it is expected that all relevant hydrologic and physical data will be 

supplied by NIH through IHP. 

2. The climate related data at the basin scale will be collected from sources such as the 

India Meteorological Department (IMD). The coarser resolution climate data, for use 

with GCMs in downscaling, will be collected from sources such as the National Center 

for Environmental Prediction (NCEP), USA, National Oceanic and Atmospheric 

Administration and Cooperative Institute for Research in Environmental Sciences 

(NOAA-CIRES), International Research Institute for Climate Change (IRI), Columbia 

University, and the Climate Diagonistic Center, Boulder, Colorado. These data available 

from different sources are, in general, available at different grid sizes, and therefore, 

suitable interpolations will be necessary to relate them to the particular basins. The 

downscaling models will be calibrated with concurrent coarse resolution and fine 

resolution data (at basin scale), with a view to obtain basin scale data for a given coarse 

resolution data. This downscaling is necessary because all GCM outputs (future climate 

scenarios) are available only at coarse resolutions of about 3°. The climate variables 

which would be used as predictors to obtain future scenarios of predictands (hydrologic 

variables) include air and sea surface temperature, relative and specific humidities, zonal, 

meridional and vertical components of wind velocity, geopotential height, sea level 

pressure among others. The coarse resolution data on these variables are available at a 

spatial resolution of 3° or higher, at various temporal resolutions (e.g., daily, monthly and 

annual) on the web sites of the sources mentioned. One of the investigators has recently 

worked with one such data set through a student dissertation (Tripathi, 2004). 

3. Statistical and time series analysis of the hydrologic and climatic data will be carried 

out to understand the inter-annual variability of precipitation and water availability in the 

two river basins, and to relate the flood events with climatic events. A main focus in the 
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project would, however, be on larger time scales of a season comprising of several 

months (e.g., the monsoon, post-monsoon and summer seasons, typically comprising of 4 

months each). Since the interest is in water availability assessment, the total seasonal 

flow in the basin would be one of the important variables investigated, avoiding suitably 

the need to account for controlled flows from reservoirs. An implicit assumption in such 

an approach is that the reservoirs have a seasonal cycle of emptying and filling up, which 

is generally valid in the country. 

4. A set of predictors will be identified from the statistical analysis of climate variables 

(such as those listed in step 2 above) for downscaling of predictors to hydrologic 

variables (predictands) such as rainfall, streamflow and evapotranspiration. Screening of 

the climate variables would be done to identify those variables which have the maximum 

influence on the hydrologic variables. The following guidelines are available (Wilby and 

Wigley, 1998) for identifying climate predictors: (a) The predictor (e.g., sea surface 

temperature, surface pressure, wind velocity etc.) should have high correlation with the 

predictand (e.g., streamflow and evapotranspiration) and the dependence should have a 

physical meaning, (b) The predictor should be sensitive to climate change signal, (c) The 

relationship between predictor and predictant should be robust and should not change due 

to possible climate change, and (d) The predictor should be realistically simulated by the 

General Circulation Models (GCMs). The methodology for identifying the predictor 

variables would consist of the following steps: (a) Cross correlation analysis between 

climate predictors and hydrologic variables, for annual and seasonal time scales (b) 

Cross correlation analysis across all climate predictors to screen independent predictor 

variables, (c) Identification of spatial domain of each predictor by studying the spatial 

variation of the cross correlation structures between predictands and the hydrologic 

variables, and (d) Qualitative analysis of nonlinear relationships through scatter plots and 

curve fitting between predictor and predictands (hydrologic variables). This step IS 

necessary because the correlation analysis gives a measure of only linear relationships. 
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Fig 1. NCEP grid points surrounding the meteorological sub-division Orissa 

5. Suitable downscaling techniques will be used/developed to downscale the GCM 

outputs to the river basin scales. General Circulation Models (GCMs) are the most widely 

used tools for studying climate change impact on various physical phenomena. Despite 

significant progress in developing GCMs, however, the resolution of the currently 

available GCMs is about 3°, which is of the order of several thousand square kilometers. 

There is thus a spatial scale mismatch between the GCM scenarios of climate change and 

the operational scale of interest to hydrologists (such as a river basin scale). Several 

downscaling methods have been developed to address this problem. A recently 

developed method of non-parametric approach (Maity and Nagesh Kumar, 2008) will be 

explored for developing the downscaling models. 

Statistical downscaling methods, which are based on empirical relationships that 

transform large scale outputs of the GCMs to regional I basin scales will also be used for 

comparison. Use of Artificial Neural Networks (ANNs) for downscaling will also be 

explored. A recent study at liSe (Tripathi, 2004) has successfully demonstrated the use of 
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ANNs for such a purpose. The end-product of downscaling is a set of hydrologic 

variables (or predictands) at a finer spatial resolution (such as river basin/watershed/sub­

watershed scale), for a given set of climate variables simulated at a coarse spatial scale by 

GCM. Simulations provided by GCMs for several projected climate change scenarios 

specified by the IPCC (e.g., IPCC, 2000) such as the Al, Bl, A2 and B2 scenarios, would 

be downscaled to the river basin scale to generate corresponding possible hydrologic 

scenarios, for the two river basins, with the statistical relationships developed in step 4 

above. 

The hydrologic scenarios will be generated for several future periods, such as 2025, 2050 

etc., for which the GCM outputs are available. Among outputs available from a number 

of GCMs, it is proposed to use those from the second generation Coupled General 

Circulation Model (CGCM2) of the Canadian Center for Climate Modeling and Analysis 

and the second generation Global climate model of Hadley's Centre (HadCM2). It must 

be noted that running a GCM is much beyond the scope of the proposed project, and 

simulations of GCMs developed by eminent International climatologists that could be 

readily procured, will be used in the project. 

6. From the hydrologic scenarios of streamflow and evaporation (or evapotranspiration), 

implications of climate change on seasonal water availability and water use will be 

assessed. The water use scenarios will be generated for the two basins from the generated 

evapotranspiration values and (projected) cropping patterns. Where available, satellite 

remote sensing imageries would be used to obtain land use/land cover information within 

the river basins. GIS would be used appropriately for spatial data base analysis and 

presentation of results. Essential software & hardware for image analysis and GIS is 

available at the Institute. 

From the key findings of the study, suggestions for sustainable use of water in the basins 

would be made, and guidelines to policy makers regarding adaptation of water resource 

projects to mitigate the impact of climate change will be provided. 

6. Any changes in the objectives during the operation of the scheme: 

Objectives (1), (2) and (6) could not be dealt with, in the project because of shortage of 

time. Also, the implications of climate change were studied mainly on rainfall and 
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streamflow. Implications on water demand (through evapotranspiration) could not be 

studied. However, the methodologies developed in the project are general and are readily 

applicable to other variables and other regions. The work that could not be completed in 

this project could be taken up through subsequent projects, either by the same 

investigators or by others. 

7. Data Collected and Used in the Analysis, with sources of data: 

A considerable effort has been put in collecting hydrologic/meteorological data of the 

Mahanadi (Fig. 2) and Krishna (Fig. 3) river basins. The data have been collected from 

Central Water Commission (CWC), Hyderabad, IMD, Hirakud Project Office, Orissa, 

and the Water Resources Development Organisation (WRDO), Karnataka. The following 

data have been collected: Daily rainfall data from three IMD rain gauge stations within 

Mahanadi basin upstream of Hirakud reservoir: Jharsuguda Aero (1949-2000), Champa 

(1951-84) and Raipur (1979-99); Daily discharge data at Basantpur (1972-73 to 2003-04) 

and Seorinarayan (1986-87 to 2002-03), both upstream of Hirakud reservoir. Gauged 

streamflow data have been obtained at the gauges shown in Fig. 3, for the Krishna basin. 

The details of these data are given in Table 1. In addition, a CD-ROM from IMD 

containing High Resolution (one degree grid) Daily Rainfall Data for 53 years (1951-

2003) has been obtained. Meteorological data such as the rainfall, maximum and 

minimum temperatures, relative humidity, wind speed and evaporation rate are acquired 

for several stations in Krishna basin from WRDO, Bangalore, and CRIDA, Hyderabad: 

Santhebastwadi (1991-2003), Badami (1991-2003), Bellary (1967-1987), Bijapur (1995-

2003), Puttur (1991-2001) and Gadag (1978-2000). 

In addition, depending on the region and the GCM used, appropriate data is downloaded 

from the websites of IPCC datacenter and the National .Center for Environmental 

Prediction (NCEP), USA. These details are given in the methodology section. 
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Fig 2 Mahanadi Basin 
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Table 1. Details of Daily Streamflow Data Collected (Krishna Basin) 

S.No. Site I Code No. State District Tributary !Latitude N Longitude£ ~ecord Duration 

1 iBawapurarn (AKLOOB8) Andhra Pradesh Kumool Tungabhadra 15° 53'00" 77 ° 57'00" 11 /0711965 to 29/5/2001 

2 Cholachguda(AKSOOHI) Kamataka Bijapur Malaprabha 15°52"00" 75 ° 43' 00" 01 /06/1982 to 29/5/2001 

3 iDaddi (AKTOOU8) Kamataka Belgaum Ghataprabha 16°04'00" 74 ° 28' 00" 01/06/ I979 to 30/5/2001 

4 Darneracherla (AKFOOA 7) Andhra Pradesh fNalgonda Musi I6° 44'00" 79 ° 40'00" 27/0711968 to 30/5/200I 

5 Galgali (AKOOOR3) Kamataka Bijapur - 16°25'00" 75 ° 26"00" 2110211976 to 30/5/200I 

6 Gokak falls (AKTOOP9) Kamataka Belgaum Ghataprabha I6°IO'OO" 74 ° 49'00" 13/07/1971 to 30/5/200I 

7 Gotur (AKT20C3) Kamataka Belgaum Ghataprabha I6 "13'00" 74° 3I'OO" I7/06/1980 to 30/5/2001 

8 Halia (AKHOOG2) Andhra Pradesh INalgonda Halia I6°46'00" 79° 2I 'OO" 11/07/1984 to 30/5/200I 

9 Huvinhedgi (AKOOON2) ~amataka Raichur - I6°29'07" 76 ° 55'07" 01/02/1976 to 30/5/200I 

IO Jewangi (AKPIOM5) Andhra Pradesh Ranga Reddy Bhima 17°15'00" 77 ° 28' 00" 26/11/ I978 to 30/5/200I 

11 K Agraharam (AKOOOK6) Andhra Pradesh M'boob Nagar . 17°I5'00" 77 °51'00" 30/08/ I98I to 30/5/200 I 

I2 Keesara (AKAOOB4) Andhra Pradesh Krishna Munneru I6°43'00" 80° 19'00" 26/06/ I964 to 30/5/200I 

13 Kokangaon (AKP7006) ~amataka Bijapur Bhima 17°I8'00" 75 ° 49' 00" 21107 / I979 to 30/5/2001 

I4 LJakshmipurarn (AKL10B7) ~ndhra Pradesh Kumool Tungabhadra I5°45'30" 78 ° 04' 30" I3/09/1984 to 19/5/2001 

I5 Madhira (AKAIOD2) Andhra Pradesh Khammam Munneru 16°55'00" 80° 21'00" 07/06/1984 to 30/5/200I 

I6 Malkhed(AKPIOEI) IK.amataka Gulbarga Bhima I7° I2'35" 77 ° 09' 25" 1/08/1990 to 30/5/200 I 

17 Mantralayam (AKLOOF2) Andhra Pradesh Kumool Tungabhadra 15° 57'00" 77°26'00" 30/06/1972 to 30/5/200I 

18 Mudhol IK.amataka Belgaum Ghataprabha 16°1900" 75°21'00" 25/7/2000 to 30/5/2001 

I9 Navalgund (AKS20I2) Kama taka Dharwad Malaprabha 15°33'00" 75 ° 22'00" 05/06/199I to 30/5/200I 

20 Oollenur(AKLOOKI) Kamataka Raichur Tungabhadra I5°28'00" 76 ° 42' 00" 10/07/1972 to 30/5/200I 

21 iP.S.Gudem (AKA20F5) Andhra Pradesh Warangal Munneru 17 ° 25'00" 79 ° 57' 00" 01/09/1987 to 30/5/2001 

22 1Paleru Bridge (AKCOOD3) Andhra Pradesh Krishna Paleru 16°57'00" 80 ° 03" 00" 06/09/1964 to 30/5/200I 

23 IPandegaon (AKUOOK6) Kama taka Belgaum Agrani I6°56'00" 74° 56'00" 06/10/1979 to 29/5/200 I 
24 IPondugala (AKOOOE7) Andhra Pradesh Guntur - 16° 41'00" 79° 40'00" 13/11/1975 to 30/5/2001 

25 Sadalga (AKVOOD3) Kamataka Belgaum Dudhganga I6°34'00" 74 ° 32'00" 24/0611969 to 29/5/200 I 

26 Shirdhon (AKP80B8) Kamataka Bijapur Bhima 17°24'00" 75 ° 32' 00" 30/08/1979 to 30/5/200I 

27 T. Rampuram (AKLSOA6) Kama taka Ballary Tungabhadra I5°39'33" 76 ° 57' 58" I8/ I2/1965 to 30/5/200I 

28 Talikot (AKQOOE2) Kamataka Bijapur Don I6°28'22" 76° I7'23" 2I/09/ I995 to 30/5/200I 

29 Vijayawada (AKOOOB9) Andhra Pradesh Krishna - 16° 30'00" 80 ° 37' 00" 02/09/1964 to 30/5/2001 

30 Wadenapalli (AKOOOD5) Andhra Pradesh fNalgonda ' 
16°48'00" 80 ° 04' 00" 10/12/1965 to 30/5/2001 

31 Yadgir(AKPOOB6) Kama taka Gulbarga Bhima I6°44'03" 77°07'18" OI/08/1965 to 30/5/2001 
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8. Methodology Followed: 

The following subsections provide the details of the work carried out in the project. The 

discussion is organized as follows: The need for downscaling, in the context of regional 

climate change impact assessment is discussed first, followed by a discussion on the 

downscaling and projections of streamflow in Mahanadi river basin using the Relevance 

Vector Machines (RVMs). Work carried out on assessing the impacts of climate change 

on meteorological drought in the Orissa meteorological subdivision, and addressing 

uncertainties thereof, is discussed next. Since the downscaled outputs from different 

GCMs and different scenarios lead to different projections for the future, weighted 

probability distributions are provided for the Mahanadi streamflow, the weights having 

been based on the performance of the particular GCMs and the scenarios during the 

recent past, 1991-2005. This methodology, along with discussion on the results is 

presented next. Extensive studies have been carried out in the project on identification of 

climate predictors for modeling the hydrologic variables, in the Malaprabha sub-basin of 

the Krishna basin. Details of these studies are presented in the last subsection. 

8.1 Statistical downscaling of GCM simulations to streamflow using relevance 

vector machine 

Modeling hydrologic impacts of climate change involves simulation results from General 

Circulation Models (GCMs), which are the most credible tools designed to simulate time 

series of climate variables globally, accounting for the effects of greenhouse gases in the 

atmosphere. GCMs perform reasonably well in simulating climatic variables at larger 

spatial scale (> 104 km2
), but poorly at the smaller space and time scales relevant to 

regional impact analyses (Bates et al, 1998). Such poor performances of GCMs at local 

and regional scales have led to the development of Limited Area Models (LAMs) in 

which fine computational grid over a limited domain is nested within the coarse grid of a 

GCM (Jones et al, 1995). This procedure is also known as dynamic downscaling. The 

major drawback of dynamic downscaling, which restricts its use in climate change impact 

studies, is its complicated design and high computational cost. Moreover, it is inflexible 
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in the sense that expanding the region or moving to a slightly different region requires 

redoing the entire experiment (Crane and Hewitson, 1998). Another approach to 

downscaling, termed statistical downscaling, involves deriving empirical relationships 

that transform large scale features of the GCM (Predictors) to regional scale variables 

(Predictands) such as precipitation and streamflow. There are three implicit assumptions 

involved in statistical downscaling (Hewitson and Crane, 1992). Firstly, the predictors are 

variables of relevance and are realistically modeled by the host GCM. Secondly, the 

empirical relationship is valid also under altered climatic conditions. Thirdly, the 

predictors employed fully represent the climate change signal. 

Statistical downscaling methodologies can be broadly classified into three categories 

(Murphy, 1999): weather generators, weather typing and transfer function. Weather 

generators are statistical models of observed sequences of weather variables. They can 

also be regarded as complex random number generators, the output of which resembles 

daily weather data at a particular location (Katz and Parlange, 1996). There are two 

fundamental types of daily weather generators, based on the approach to model daily 

precipitation occurrence: the Markov chain approach (Hughes and Guttrop, 1994) and the 

spell-length approach (Mehrotra and Sharma, 2005). In the Markov chain approach, a 

random process is constructed which determines a day at a station as rainy or dry, 

conditional upon the state of the previous day, following given probabilities. In case of 

spell-length approach, instead of simulating rainfall occurrences day by day, spell-length 

models operate by fitting probability distribution to observed relative frequencies of wet 

and dry spell lengths. In either case, the statistical parameters extracted from observed 

data are used along with some random components to generate a similar time series of 

any length. Weather typing approaches (Brown and Katz, 1995) involve grouping of 

local, meteorological variables in relation to different classes of atmospheric circulation. 

Future regional climate scenarios are constructed either by resampling from the observed 

variable distribution (conditioned on the circulation pattern produced by a GCM), or by 

first generating synthetic sequences of weather pattern using Monte Carlo techniques and 

then resampling from the generated data. The mean or frequency distribution of the local 

climate is then derived by weighting the local climate states with the relative frequencies 

of the weather classes. The most popular approach of downscaling is the use of transfer 
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function which is a regression based downscaling method (Crane and Hewitson, 1998), 

(Cannon and Whitfield, 2002), (Wilby et a!, 2002), (Tripathi et al, 2006) that relies on 

direct quantitative relationship between the local scale climate variable (predictand) and 

the variables containing the large scale climate information (predictors) through some 

form of regression. Individual downscaling schemes differ according to the choice of 

mathematical transfer function, predictor variables or statistical fitting procedure. Iodate, 

linear and nonlinear regression, Artificial Neural network (ANN), canonical correlation, 

etc. have been used to deri.ve predictor-preditand relationship. Among them, ANN based 

downscaling techniques have gained wide recognition owing to their ability to capture 

nonlinear relationships between predictors and predictand (Crane and Hewitson, 1998), 

(Hewitson and Crane, 1996). 

Despite a number of advantages, the traditional neural network models have several 

drawbacks including possibility of getting trapped in local minima and subjectivity in the 

choice of model architecture (Suykens, 2001). Recently, Vapnik (1995, 1998) pioneered 

the development of a novel machine learning algorithm, called Support Vector Machine 

(SVM), which provides an elegant solution to these problems. The SVM has found wide 

range of applications in the fields of classification and regression analysis. SVM has 

some drawbacks of rapid increase of basis functions with the size of training data set and 

absence of probabilistic interpretation (Govindaraju, 2005). Recently Tipping (2001) 

developed Relevance Vector Machine (RVM), a new methodology for classification and 

regression using the concept of probabilistic bayesian learning framework, which can 

predict accurately utilizing dramatically fewer basis functions than a comparable SVM 

while offering a number of additional advantages. 

In a recent study (Tripathi et a!, 2006), SVM has been used as a downscaling technique 

for predicting subdivisional precipitation of different regions in India. In that study, the 

GCM generated large scale output (predictors) are converted into principal components 

using Principal Component Analysis (PCA) and used directly as an input to SVM with 

Gaussian RBF as the kernel function. Ghosh and Mujumdar (2006) found that a heuristic 

classification of large scale GCM outputs based on fuzzy clustering, prior to regression, 

improves the model performance and thus in the present study both SVM and RVM 

coupled with PCA and fuzzy clustering are used to downscale GCM output to 
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streamflow. The flowchart of the model is presented in Fig. 8.1.1. The large scale GCM 

outputs are converted into principal components using PCA, which is further classified 

into fuzzy clusters using fuzzy c-mean clustering. The membership in each of the clusters 

along with the principal components is used as input to SVMIRVM. The relationship 

between the climate variables and streamflow is complex and nonlinear. Standard 

regression methods such as linear regression fail to model such nonlinear processes, and 

therefore SVM and RVM are used in the present study. Gaussian RBF, Laplacian RBF 

and heavy tailed RBF have been used as the kernel functions to compare the results. The 

National Center for Environmental Prediction/ National Center for Atmospheric Research 

(NCEP/NCAR) reanalysis data have been used for training the downscaling model and 

GCM output is used for projecting future streamflow with the trained model. The 

performance ofRVM is compared with SVM for downscaling in the present study. 
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Fig. 8.1.1 Flowchart of the proposed model 
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Results are obtained with different kernel functions. The model is applied to the case 

study of Mahanadi river basin in India to model the reservoir inflow to the Hirakud dam 

from large scale GCM output. Details of the case-study, data and the analysis performed 

prior to the training of SVM or RVM is presented in the following section. 

8.1.1 Data and input to vector machine 

The Hirakud dam is located at Mahanadi River in Orissa at east coast of India (Fig. 

8.1.2). The latitude and the longitude of the location are 21.32° N and 83.45°E, 

respectively. The monthly inflow to Hirakud dam from 1961 to 1990 is obtained from 

Department of Irrigation, Government of Orissa, India. Due to the absence of any major 

control structure upstream to Hirakud dam, the inflow to the dam is considered as 

unregulated flow. Mahanadi is a rain-fed river with high streamflow in monsoon (June, 

July, August and September) due to heavy rainfall and therefore the ground water 

component with infiltration is insignificant compared to the streamflow during the 

monsoon season. In the non-monsoon season, infiltration to ground water is quite 

significant in absence of rainfall, resulting in low streamflow in Mahanadi with almost 

dry conditions. Thus, only for the monsoon season the streamflow can be modeled with 

the climatological variables without considering ground water component. Therefore the 

monthly monsoon flow data of Mahanadi from year 1961 to year 1990 is used in the 

downscaling model as predictand. Selection of predictor is an important step in statistical 

downscaling. The predictors, used for downscaling (Wetterhall et al, 2005) should be: (1) 

reliably simulated by GCMs, (2) readily available from archives of GCM outputs, and (3) 

strongly correlated with the surface variables of interest. Cannon and Whitfield (2002) 

have used MSLP, 500 hPa geopotential height, 800 hPa specific humidity, and 100-500 

hPa thickness field as the predictors for downscaling GCM output to streamflow. 

Monsoon streamflow can be considered broadly as the resultant of rainfall and 

evaporation. Rainfall is a consequence of Mean Sea Level Pressure (MSLP) (Bardossy et 

al, 1995), geopotential height and humidity whereas evaporation is mainly guided by 

temperature and humidity. Therefore, the present study considers 2 m surface air 

temperature, MSLP, 500 hPa geopotential height and surface specific humidity as the 

predictors for modeling Mahanadi streamflow in monsoon season. It is worth mentioning 

that land use is the single most important factor in generating the flow from the rainfall. 
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In the present study, land use pattern is assumed to remain the same in future and 

therefore the statistical relationship between the predictors and the streamflow will 

remain unaltered in future. Gridded climate variables are obtained from the National 

Center for Environmental Prediction/National Center for Atmospheric Research 

(NCEP/NCAR) reanalysis project (Kalnay et al, 1996) 

(http://www.cdc.noaa.gov/cdc/reanal ysis/reanalysis.shtml). Reanalysis data are outputs 

from a high resolution atmospheric model that has been run using data assimilated from 

surface observation stations, upper-air stations, and satellite-observing platforms. Results 

obtained using these fields therefore represent those that could be expected from an ideal 

GCM (Cannon and Whitfield, 2002). Monthly climatological data from 1961 to 1990 

were obtained for a region spanning l5°N-25°N in latitude and 80°E-90°E in longitude. 

Fig. 8.1.2 shows the NCEP grid points superposed on the map ofMahanadi river basin. A 

statistical relationship based on fuzzy clustering and vector machine is developed 

between large scale climatic variables and inflow to Hirakud dam, with reanalysis data as 

regressor and observed streamflow as regressand. This relationship is used to model the 

future streamflow using GCM output. GCM developed by Center for Climate System 

Research/ National Institute for Environmental Studies (CCSR/NIES), Japan, with B2 

sc~nario is used for projection of future streamflow. The grid size of the GCM is 

5.5°latitude X 5.625°longitude. 

The monthly output for B2 scenario is extracted for CCSR-NIES GCM for the region of 

interest covering all the NCEP grid points extending from 13.8445°N to 30.4576°N in 

latitude and 78.7500°E to 95.6250°E in longitude from IPCC data distribution center 

(http://wv.w.mad.zmaw.de/IPCC_DDC/htmllddc_gcmdata.html). 
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Fig 8.1.2 NCEP grids superposed on Mahanadi river basin 

Standardization (Wilby et al, 2004) is used prior to statistical downscaling to reduce 

systematic biases in the mean and variances of GCM outputs relative to the observations 

or NCEP/NCAR data. The procedure typically involves subtraction of mean and division 

by standard deviation of the predictor variable for a predefined baseline period for both 

NCEP/NCAR and GCM output. The period 1961-1990 is used as a base-line because it 

is of sufficient duration to establish a reliable climatology, yet not too long, nor too 

contemporary to include a strong global change signal (Wilby. et a!, 2004). A major 

limitation of standardization is that it considers the bias in only mean and variance. There 

is a possibility that the reanalysis data and GCM output may deviate from normal 

distribution, and there may exist bias in other statistical parameters. For Mahanadi river 

basin, four predictor variables (MSLP, 2m surface air temperature, specific humidity, and 

500hPa geopotential height) at 25 NCEP grid points with a dimensionality of 100, are 

used which are highly correlated with each other. Principal Component Analysis (PCA) 

(Hughes et a!, 1993) is performed to transform the set of correlated N-dimensional 

predictors (N = 100) into another set of N-dimensional uncorrelated vectors (called 

principal components) by linear combination, such that most of the information content 

of the original data set is stored in the first few dimensions of the new set. In the present 

study, it is observed that first 10 Principal Components (PCs) represent 98.1% of the 

information content (or variability) of the original predictors, and therefore they are used 
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in downscaling. The advantage of PCA is that it reduces the dimensionality of the 

predictors and at the same time there is no redundant information and correlation among 

the predictors, which may lead to multicollinearity. Fuzzy clustering is used to classify 

the principal components into classes or clusters. Fuzzy clustering assigns membership 

values of the classes to various data points, and it is more generalized and useful to 

describe a point not by a crisp cluster, but by its membership values in all the clusters 

(Ross, 1997), (GUier and Thyne, 2004). The important parameters required for fuzzy 

clustering algorithm are number of clusters (c) and fuzzification parameter (m). 

Fuzzification parameter controls the degree of fuzziness of the resulting classification, 

which is the degree of overlap between clusters. The minimum value of m is 1 which 

implies hard clustering. Number of clusters and fuzzification parameter are determined 

from cluster validity indices like Fuzziness Performance Index (FPI) and Normalized 

Classification Entropy (NCE) (Roubens, 1982). FPI estimates the degree of fuzziness 

generated by a specified number of classes and is given by 

FP/=1- cF-1 

c-1 

where 

(8. 1.1) 

(8.1 .2) 

J.l,, is the membership in cluster i of the principal components in month t. NCE estimates 

the degree of disorganization created by a specified number of classes and given as 

NCE=_!!_ 
loge 

1 c T 

where H =-LL -J.111 x log(J.lu) 
T ,=1 r=1 

(8.1.3) 

(8.1.4) 

The optimum number of classes/clusters is established on the basis of minimizing these 

two measures given by Eqs. (8.1.1)-(8.1.3). The FPI and NCE attain their minimum 

values when the number of clusters is 3 for almost all cases with different m values. The 

value of FPI should be chosen in such a way that the resulting clustering is neither too 

fuzzy nor too hard. The clustering becomes non-fuzzy when FPI = 0 and fully fuzzy 

when FPI = 1. Guier and Thyne (2004) have recommended an FPI value of 0.25 for the 
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purpose of selection of number of clusters and fuzzification parameter in fuzzy 

clustering. In this work, FPI and NCE are plotted with number of clusters c, for different 

values of fuzzification parameter, m (Fig. 8.1.3). It is found that FPI value of almost 0.25 

is achieved form= 1.4 and c = 3. These values are used for fuzzy clustering. The sum of 

the membership of a data point in three clusters is equal to 1 and thus the membership of 

only two clusters will automatically fix the other and are sufficient to be used as an input 

to vector machine. Thus, the number of input variables used in the SVM and RVM is 12 

(10 principal components along with two memberships). The following section presents 

the Support Vector (SV) regression used for statistical downscaling with training and 

testing. 
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Fig. 8.1.3 Cluster validity test 

8.1.2 Training and testing with support vector machine 
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The foundations of Support Vector Machine (SVM) have been developed by Vapnik 

(1995) and are gaining popularity due to many attractive features, and promiSing 

18 



empirical performance. The formulation embodies Structural Risk Minimization (SRM) 

principle, which has been proved to be superior (Gunn et al, 1997) to traditional 

Empirical Risk Minimization (ERM) principle, employed by conventional neural 

networks. SRM minimizes an upper bound on the expected risk, as opposed to ERM that 

minimizes the error on the training data. This difference equips SVM with a greater 

ability to generalize, which is the goal of statistical learning. A brief introduction to 

statistical learning with the concept of SRM may be found in Vapnik (1998) and Dibike 

et al. (Dibike et al, 2001). 

Given a training data { ( xP y1 ), ..... , ( x, y1 ), X E ~W, Y E 9t} , the SV regression equation 

can be given by (Smola, 1996) 

I 

y=f(x)= l:w,x K(x;ox)+b (8.1.5) 
I;! 

where K (x,, x) and w, are the kernel functions and the corresponding weights used in the 

SV regression. b is a constant known as bias. The ith input xi for training is called support 

vector if w, "* 0 for that particular i. Naturally, in Eq. (8.1.5) the inputs other than support 

vectors will be vanished. The architecture of an SVM is presented in Fig. 8.1.4. The loss 

function considered for SVM is an E-insensitive loss function (Fig. 8.1.5) described as 

In= Jy- f(x)l, = { 0 . if Jy- .~(x)J ~ r-
Jy- .f (x)J- f. otherw1se (8.1.6) 

The methodology for computation of weights and bias is presented in Appendix I. 

Gaussian, Laplacian and heavy tailed Radial Basis Functions (RBF) are used as kernel in 

the present study. Details of these kernel functions are presented in Appendix 2. Selection 

of a suitable RBF is an important task in SVM as it has a high sensitivity on model 

performance (Chapelle et al, 1999). All the above mentioned kernels are used in the 

present analysis to compare and select the SVM regression model with the best kernel for 

downscaling purpose. 

SVM regression models with all the kernels are trained to determine the relationship 

between NCEP/NCAR output of large scale climate variables and Mahanadi monsoon 

streamflow where the principal components, membership in fuzzy clusters and seasonal 

components are used as input. For training and testing K-fold cross validation (K = 10) 

procedure is used. According to this methodology, the training set is partitioned into K 

19 

. I 



~] 

Input 
Vector ····-----1 I 0 

' ' I o 
; : 
I : 

' ' ' ' ' I 

! 
' ' ' ' ' 

I 
: 
' I 

i 
!.__ ---- ~ 

• 

Support Vectors Kernels 

X 

~----------------- ---
: 
I 
I 
I 

' ' ' ' 
i 

. I 
I ' 
•-------- ------------ J 

Fig. 8.1.4 Architecture of an SVM 
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8.1.3 Relevance vector machine 
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Despite of excellent modeling performance of SVM, it has some practical and significant 

drawbacks. They are (Tipping, 2001): 
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• Although relatively sparse, SVMs make unnecessarily liberal use of basis 

functions since the number of support vectors required typically grows linearly 

with the size of the training set. Some form of post-processing is often required to 

reduce computational complexity. 

• Predictions are not probabilistic. In regression the SVM outputs a point estimate, 

whereas the conditional distribution of target given input (p ( t I x )) is desired. 

• There is no straightforward method to estimate C and c. Sometimes cross 

validation is used to estimate them which is wasteful for both data and 

computation. 

• The kernel function K(x, x;) must satisfy Mercer's condition. 

Relevance Vector Machine developed by Tipping (2001) is a Bayesian treatment of Eq. 

(8.1.5) which does not suffer from any of the limitations stated above. In RVM, a fully 

probabilistic framework is adopted and introduced a priori over the model weights 

governed by a set of hyperparameters, associated with weights, whose most probable 

values are iteratively estimated from the data. Sparsity is achieved because in practice the 

posterior distributions of many of the weights are sharply (indeed infinitely) peaked 

around zero. The remaining training vectors associated with nonzero weights are termed 

as relevance vectors. The most compelling feature of the RVM is that, while capable of 

generalization performance comparable to an equivalent SVM, it typically utilizes 

dramatically fewer kernel functions. Following Tipping (2001), the mathematical 

background of RVM is presented here. RVMs have identical functional form as SVMs 

(Eq. (8.1.5)), but use kernel terms that correspond to fixed nonlinear basis function 

(Tipping, 2001). 

Seeking to forecast y for given x according to y = f (x) + &n, involving weights 

w = ( w0 , w1, ..... , w1 f , where & n ~ N (0, CJ';) , the likelihood of the complete data set can 

be written as 

(8.1.7) 

where 

<l>(x;)- [I, K(x;. xi). K(x;. x 2) ..... K(x;. x!)f 
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Maximum likelihood estimation of w and cr:. often results in severe overfitting. Tipping 

(2001) suggested imposition of some prior constraints on the parameters, w, by adding a 

complex penalty to the likelihood or the error function. This is a prior information that 

controls the generalization ability of the learning system. Typically, higher-level 

hyperparameters are used to constrain an explicit zero-mean Gaussian prior probability 

distribution over the weights, w: 

I 

p(w ja) = fi N(w;jO,a;') 
i==O (8.1.8) 

where a. is a hyperparameter vector that controls how far from zero each weight is 

allowed to deviate. For completion of hierarchical prior specifications, hyperpriors over a. 

and the noise variance, cr;. , are defined. Consequently, using Bayes rule, the posterior 

overall unknowns could be computed given the defined noninformative prior 

distributions: 

, p(y jw, a, a; ) · p( w, rx, a; ) 
p(wrxa-jv)= n n 

' ' '• · {J1(vlw rx CJ2 )p(w a CJ2 )dwdrxdCJ2 
• .. l 1 tn 1 ' tn tn (8.1.9) 

Computation of p ( w, a, ere. 2 1 y) in Eq. (8.1.9) is not possible directly as the integral in 

the right-hand side can not be performed. Instead the posterior can be decomposed as 

p( w, ex, CJ;.Iy) = p(w IY, ex, a~.)p(o:, cr:. I Y) 

The posterior distribution of the weight can be given by 

( ·J· , ) = p(~· Jw,a;.) ·p(wjrx) = (? )-t/2l '"l- '12 
P " ) . .x, a- ( I , ) _n "' •· p y a, a;. 

x cxp { -~(w -Jt),..r-1(w- p)} 

where the posterior co-variance and mean are respectively 

L: = (a~24>T 4> + A)-' 

(8.1.10) 

(8.1.11) 

(8.1.12) 

(8.1.13) 

with A=diag(a 0 , ...... ,a1). Therefore, machine learning becomes a search for the 

hyperparameter posterior most probable, I.e., the maximization of 

p( IX, a;. I y) ex p(y!IX, a;) p( rx )p( a~) 
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with respect to a and 0";" , For uniform hyperpriors, it is required to maximize the term 

p(y I a, O"c" 
2
), which is computable and given by 

p(y Ia, a;.) = J p(ylw, a;" )p( wla)dw 

= (21tri/21a~J + d>A- lcJ>TII/2 

X cxp{-~yT(O:J + <PA - lcJ>Tf\} 
(8.1.14) 

Tipping (200 1) contended that all the evidence from several experiments suggests that 

this predictive approximation is very effective. Bayesian models refer to Eq. (8.1.9) as 

the marginal likelihood, and its maximization is known as the type II-maximum 

likelihood method (Berger, 1985). As argued by Tipping (2001), MacKay (2003) refers 

to this term as the evidence for hyperparameter and its maximization as the evidence 

procedure. Hyperparameter estimation is typically carried out with an iterative formula 

such as a gradient ascent on the objective function (Tipping, 2001). 

At convergence of the hyperparameter estimation procedure, predictions can be made 

based on the posterior distribution over the weights, conditioned on the maximized most 

probable values of a and 0";" , a MP and O"~p respectively. The predictive distribution for a 

given x. can be computed using Eq. (8.1.11): 

p(v.ly, O:MJ>> ~MP) = J p(y. lw, (j~p)p(wly, O:MP• O"~p)dw 
(8.1.15) 

Since both terms in the integrand are Gaussian, this can be readily computed, giving 

p(v. IY, aMP, ~MP) = N (y.lt*, cr;) (8.1.16) 

with 

(8.1.17) 

(8.1.18) 

The outcome of the optimization involved in RVM (i.e. maximization of p (y I a, O"c" 
2

) ) , 

is that many elements of a go to infinity such that w will have only a few nonzero weights 

that will be considered as relevant vectors. The relevant vectors (RVs) can be viewed as 

counterparts to support vectors (SVs) in SVMs; therefore, the resulting model enjoys the 
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properties of SVMs (i.e., sparsity and generalization) and, in addition, provides estimates 

of uncertainty bounds in the predictions they make (Khalil eta!, 2006). 

Table 8.1.2 Results obtained from training and testing of R VM based downscaling model 

Kernel used 

Gaussian RBF 
Laplacian 

RBF 
Heavy tailed 

RBF 

R value for 
training 

0.9423 
0.8417 

0.7937 

8.1.3.1. Training and testing with RVM 

R value for 
testing 

0.6019 
0.6418 

0.6998 

Number of 
relevant vectors 
(%of training data 
set) 

71.30 
25.56 

8.06 

Principal components and fuzzy cluster memberships derived from NCEP/NCAR 

reanalysis data are used as input to RVM. Similar to SVM, Gaussian RBF, Laplacian 

RBF and Heavy tailed RBF are used as kernels in the RVM regression model for 

downscaling with K-fold cross validation. The results obtained from training and testing 

are presented, with cr = 1, in Table 8.1.2. Compared to SVM, RVM involves very few 

relevant vectors for the regression with all the kernels and thus minimizing the possibility 

of overtraining as well as computational time. This is reflected in the differences between 

R values for training and testing with all the kernels. A comparatively small difference 

between the R value of training and testing shows the reduction of overtraining which is 

not achieved by SVM. Among the RVM kernels the model with heavy tailed RBF shows 

the highest R value for testing among all the RVM models and thus selected as the best 

model for downscaling. The selection of the width of the kernel is one of the major 

criterion in selecting the appropriate model. The kernel width can not be computed with 

the Bayesian treatment of RVM and therefore a post-modeling sensitivity analysis is 

required to compute kernel width that results in minimum overfitting. Sensitivity analysis 

of the training and testing R values and the number of RVs involved in the model is 

carried out, with variation in the kernel width, and presented in Fig. 8.1.6. As RVM 

involves only kernel width as a parameter, the computational effort of postmodeling 

sensitivity analysis is significantly less compared to SVM. It is observed that the testing 

R value achieved its maximum at a kernel width of 1.9, involving minimum number of 
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RVs. The training and testing R values are obtained as 0.7745 and 0.7256, respectively, 

using only 7.41% of the data set as relevant vectors. Therefore RVM using heavy tailed 

RBF with the width of 1.9 is used for statistical downscaling in the present study. After 

the selection of model the whole data set is trained using RVM based regression with 

heavy tailed RBF as the kernel. The overall R value is obtained as 0.8226. The observed 

and predicted monsoon streamflow from June 1961 to August 1990 with scatter plot are 

presented in Fig. 8.1.7. It is clear that even RVM is not able to mimic the extreme rainfall 

observed in the record. Possibly this could be because regression based statistical 

downscaling models often cannot explain entire variance of the downscaled variable 

(Wilby et a!, 2004). The goodness of fit of the model is also tested with Nash-Sutcliffe 

coefficient (Nash and Sutcliffe, 1970), which has been recommended by ASCE Task 

Committee on defmition of Criteria for evaluation of watershed models of the watershed 

management committee, Irrigation and Drainage Division (ASCE, 1993). The Nash­

Sutcliffe coefficient (E) is given by 

£ _ l _ 2:r(Qot- Qpr)
2 

- 2 
2:r(Qot- Qo) (8.1.19) 

where Qor and Qpr are the observed and predicted streamflow in time t, and Qo is the mean 

observed streamflow. Nash-Sutcliffe coefficient can vary from 0 to 1 with 0 indicating 

that the model predics no better than the average of the observed data, and 1 indicating a 

perfect fit. It is obtained as 0.67 for the present model which is satisfactory. Wetterhall et 

al. (2005) have tested the long term seasonal mean, and standard deviation for 

verification of a downscaling model. In the present analysis also, similar test has been 

performed. The long term mean and standard deviation of observed streamflow are 

7332.0 Mm3 and 5995.6 Mm3 and those of predicted streamflow are 7384.1 Mm3 and 

4607.6 Mm3
, which shows a good match in mean but difference in standard deviation. 

This may be because the regression based statistical downscaling models often cannot 

explain entire variance of the downscaled variable (Wilby et al, 2004) and therefore the 

present model can not mimic the high streamflow in 1961. Other limitation of the method 

is that assuming constant error variance (homoscedasity) may prove to be a limitation 

when streamflow is the response variable as it is often observed that streamflow error 

variance is related to the magnitude of the flow, and, the hierarchical structure cannot 
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accommodate Markovian dependence in the flows easily. After the verification, the RVM 

regression model is used for modeling of future streamflow time series from the predictor 

variables as projected by GCM developed by CCSRINIES with B2 scenarios. 

8.1.4 Future streamflow projection 

GCM developed by Center for Climate System Research/National Institute for 

Environmental Studies (CCSRINIES), Japan, with B2 scenario is used for projection of 

future streamflow. The grid size of the GCM is 5.5° latitude x 5.625° longitude. The 

monthly output for B2 scenario is extracted for CCSRINIES GCM for the region of 

interest covering all the NCEP grid points extending from 13.8445°N to 30.4576°N in 

latitude and 78.7500°E to 95.6250°E in longitude from IPCC data distribution center. 

GCM grid points do not match with NCEP grid points and thus interpolation is required 

to obtain the GCM output at NCEP grid points. Interpolation is performed with a linear 

inverse square procedure using spherical distances (Willmott et al, 1985). The predictor 

variables for CCSRINIES GCM are then interpolated to the 25 NCEP grid points. Using 

the principal directions or eigen vectors obtained from PCA of NCEP data, principal 

components are obtained for the GCM output. 
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Fig. 8.1.6 Sensitivity analysis with the width of kernel in RVM 
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The membership of the principal components of GCM output m each of the fuzzy 

clusters are then computed using the cluster centers obtained from fuzzy clustering. 
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Principal components and cluster membership of GCM output are then used in the 

developed R VM regression model to project the monsoon streamflow of Mahanadi for 

future. For validation purpose, the monsoon streamflow is also computed for the base­

line period of years 1961-1990 with the GCM output. The CDFs obtained from NCEP 

data, GCM output and the observed data, using Weibull 's probability plotting formula, 

are presented in Fig. 8.1.8(a). Although the CDF obtained from GCM matches quite well, 

there is considerable bias near zero flow values and at the extreme cases. This is because 

standardization may reduce the bias in the mean and variance of the predictor variable but 

it is much harder to accommodate the biases in large scale patterns of atmospheric 

circulation in GCMs (e.g. shifts in the dominant storm track relative to observed data) or 

unrealistic inter-variable relationships (Wilby and Dawson 2004). Moreover, regression 

based statistical downscaling models often cannot explain entire variance of the 

downscaled variable, which is also reflected in terms of bias near zero flow and high flow 

conditions. While modeling monsoon streamflow such biases should be taken care 

otherwise it will propagate in the computation of future seasons (Ghosh and Mujumdar, 

2006a). To remove such bias from a given downscaled output the following methodology 

is used: 

• CDFs are obtained with the downscaled GCM generated and observed streamflow 

for the years 1961- 1990 using Weibull' s probability plotting position formula. 

• For a given value of GCM generated streamflow (XGCM), the value of CDF 

(CDFGCM) is computed. 

• Corresponding to CDFGCM the observed streamflow value is obtained from the 

CDF of observed data. 

• The GCM generated streamflow is replaced by the observed data, thus computed, 

having the same CDF value. 

• The CDFs of GCM generated and observed streamflow, obtained for the years 

1961-1990, act as reference, and based on them the correction is applied to the 

streamflow values obtained from GCM for future. 

A major drawback of the method described above is that, if the future GCM streamflow 

is out of the range of historical GCM streamflow, the methodology of bias correction 

with Weibull's plotting position will fail. If such cases appear, then different parametric 
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probability distribution (with upper bound of random variable as 1) can be fitted to the 

observed GCM streamflow and the best pdf can be selected among them with Akaike 

Information Criteria (AI C) or v2-test. As the new range is now extended to 1, it is 

possible to perform the quantile transformation even if the future GCM streamflow is out 

of the range of historical GCM streamflow. In the present case, the future GCM 

streamflows are all within the range of observed GCM streamflow and therefore the bias 

is corrected with Weibull's plotting position and quantile transformation. The long term 

mean and standard deviation of observed streamflow are 7332.0 Mm3 and 5995.6 Mm3 

and those of GCM projected streamflow before bias correction were 7194.2 Mm3 and 

5607.2 Mm3
. After bias correction mean and standard deviation of GCM projected 

streamflow are 7331.7 Mm3 and 6009.4 Mm3
, respectively, which shows bias has been 

significantly reduced. The CDFs projected future streamflow is plotted for standard 30 

year time slices 2020 s, 2050 s and 2080 s in Fig. 8.1.8b-d, which clearly shows a 

decrease in the high flows of the monsoon season in Mahanadi. The occurrence of 

extreme high flow events will reduce significantly and therefore there is a decreasing 

trend in the monthly peak flow. The projection of CCSR!NIES GCM with B2 scenario 

presents a favorable condition for Hirakud dam in future for flood control operation. 

Earlier study (Rao, 1995) on Mahanadi river also revealed decrease in monsoon 

streamflow for the historic period with an increasing trend in surface temperature. It is 

concluded in that study, that due to increase in temperature, the water yields in the river is 

adversely affected. Following the study, it can be inferred that one of the probable reason 

of such decreasing trend in streamflow may be significant increase in temperature due to 

climate warming. 

Analysis of instrumental climate data revealed that the mean surface temperature over 

India has warmed at a rate of about 0.4 °C per century (Hingane et al., 1985) which is 

statistically significant. The increasing trend of temperature in Mahanadi river basin due 

to climate change is more severe. Rao (1992) found that the surface air temperature over 

this basin is increasing at a rate of 1.1 oc per century, which is more than double of that 

of entire India. Fig. 8.1.9a presents box plots of the temperature projected by 

CCSRJNIES with B2 scenario for historic base period (1961-1990), 2020s, 2050s and 

2080s. The box plot presents the median, upper and lower quartiles and the outliers. The 
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middle line of the box gives the median whereas the upper and lower edges give the 75 

percentile and 25 percentile of the data set, respectively. A significant increasing trend is 

observed in the surface air temperature. The corresponding box plots for the monsoon 

streamflow are presented in Fig. 8.1.9b. The result shows that although there is no 

significant change in the median of the monsoon flow, the occurrence of high flows will 

reduce significantly because of high surface warming and therefore there is a decreasing 

trend in the monthly peak flow. The reason may be the insensitivity of climatic variables 

towards low flow because of significant ground water component and therefore only the 

effect on high flow, which is of interest, is reflected in the results. It is worth mentioning 

that the projected streamflow presented, is due to a single GCM using a single scenario 

and it is widely acknowledged that disagreements between different GCMs over regional 

climate changes represents a significant source of uncertainty (Wilby and Harris, 2006). 

Therefore over-reliance on a single GCM could lead to inappropriate planning and 

adaptation responses. Thus future decision making should incorporate all the GCMs with 

scenarios to model the underlying GCM and scenario uncertainty. 
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Fig. 8.1.9. (a) Box plot of projected temperature of the case-study area by CCSR/NIES 

GCM with B2 Scenario and (b) box plot of downscaled streamflow from CCSR/NIES 

GCM output with B2 Scenario. 
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8.1.5 Remarks 

Downscaling of GCM output to monsoon streamflow is performed using SVM and R VM 

in the present analysis. Standardisation is performed to remove the biases present in the 

mean and the variances of the predictor variables. PCA and fuzzy clustering are 

performed prior to training to improve the model performance. As the model is a 

combination of classification and regression, it can be categorized into a hybrid model of 

weather typing and transfer function. It has been observed that RVM not only involves 

probabilistic reasoning but also outperforms SVM for regression based statistical 

downscaling in terms of goodness of fit. RVM involves fewer numbers of relevant 

vectors and the chance of overfitting is less than that of SVM. The model developed in 

the present study is capable of producing a satisfactory value of goodness of fit in terms 

ofR value and Nash-Sutcliffe coefficient. However, from Fig. 8.1.7 it is found that even 

RVM is not able to mimic the extreme streamflow observed in the record. Possibly this 

could be because regression based statistical downscaling models often cannot explain 

entire variance of the downscaled variable (Wilby et at, 2004). Bias resulting from the 

drawback is corrected at the end of downscaling. The GCM CCSRJNIES with B2 

scenario projects a decreasing trend in future monsoon streamflow of Mahanadi. In Rao 

(1995), a decreasing trend in the streamflow of Mahandi River with an increasing trend in 

surface temperature is observed, and it is concluded in that study that due to increase in 

temperature, the water yields in the river is adversely affected. Following the study, it can 

be inferred that one of the possible reasons for such a decrease in Mahanadi River 

streamflow may be increase in surface temperature. Such a decrease in streamflow may 

cause a critical situation for Hirakud dam in meeting the future irrigation and power 

demand. The methodology developed can be used to project the streamflow for other 

GCMs and scenarios also and there is a possibility of mismatch in the projections 

resulting GCM and scenario uncertainty. Modeling of such uncertainty is necessary for 

future decision making. The methodology presented, does not limit its usefulness only for 

modeling streamflow. It is adaptable and can be used to model any other hydrologic 

variable, viz. precipitation, evaporation, etc. to assess the impact of climate change on 

hydrology. 
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8.2 Uncertainties due to GCMs and Climate Scenarios in Projecting 
Mahanadi Streamflow 

Climate change estimates on regional or local spatial scales are burdened with a 

considerable amount of uncertainty, stemming from several sources. Huth (2004) stated 

"For estimates based on downscaling of General Circulation Model (GCM) outputs, 

different levels of uncertainty are related to: (i) GCM uncertainty or inetrmodel 

variability, (ii) scenario uncertainty or interscenario variability, (iii) different realizations 

of a given GCM due to parameter uncertainty (intramodel variability) and (iv) uncertainty 

due to downscaling methods". Uncertainty in initial conditions will also give rise to 

different GCM realizations. This work focuses on the first two sources of uncertainties in 

assessment of climate change impact on streamflow and its application to the Mahanadi 

basin in India. GCM uncertainty, which is due to incomplete knowledge about the 

underlying geophysical processes of global change, coarse grid resolutions and 

unresolved processes leads to limitations in the accuracy of the models. Scenario 

uncertainty results from unpredictability in the forecast of future socio-economic and 

human behavior resulting in future green house gas (GHG) emission scenarios. 

Downscaled outputs of a single GCM with a single climate change scenario represent a 

single trajectory among a number of realizations derived using various scenarios with 

GCMs. Such a single trajectory alone can not represent a future hydrologic scenario, and 

will not be useful in assessing hydrologic impacts due to climate change. Simonovic and 

Li (2003, 2004) have shown the uncertainty lying in climate change impact studies on 

flood protection resulting from selection of GCMs and scenarios. Use of several GCMs 

and scenarios leads to a wide spread in the downscaled hydrologic projection, especially 

in years far into the future leading to uncertainties as to which among the several possible 

predictions should be used in developing responses. 

Research into probabilistic forecasts of climate change has been advancing rapidly on 

several fronts. New and Hulme (2000) developed a model for scenario uncertainty using 

Bayesian Monte-Carlo approach assuming a prior distribution of the uncertain parameters 

of the climate models. GCM uncertainty is presented in terms of sensitivity of climate 

change model outputs to streamflow. A similar methodology for sensitivity analysis and 
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GCM uncertainty modeled in those studies is due to the inherent bias present in the 

GCMs. 

Ghosh and Mujumdar (2007a) have used nonparametric methods in modeling GCM and 

scenario uncertainty for future drought assessment in Orissa meteorological subdivision, 

India. Samples of a drought indicator are generated with downscaled precipitation from 

available GCMs and scenarios. In that study the bias has been corrected for each GCM 

with respect to the observed data of baseline period (years 1961-1990) and it is assumed 

that bias free GCM simulations are equally accurate across ail GCMs and all the 

scenarios are equally possible. With this assumption, nonparametric methods such as 

kernel density estimation and orthonormal series methods are used to determine the pdf 

of the drought indicator. Scenario uncertainty is considered in the model by incorporating 

simulations of different scenarios. The information generated through the pdf of the 

drought indicator in a future year, can be used in long term planning decisions. A 

limitation in the model is that all scenarios are not available under all GCMs, and 

therefore, outputs of some of the scenarios for a few GCMs are missing which may lead 

to partial ignorance. Moreover, the set of available scenarios may not fully compose the 

universal sample space, n , which is defined to contain all possible scenarios and thus 

precise or conventional probability is not expressive enough for application to scenarios 

(Tonn, 2005). To model partial ignorance resulting from the above mentioned reasons, 

the methodology is further extended (Ghosh and Mujumdar, 2007b) with the concept of 

imprecise probability or interval probability. A normal distribution is assumed for the 

drought indicator for each year, with imprecision inherent in it. Uncertainty underlying in 

this assumption and that due to partial ignorance about future scenarios are modeled by 

fitting the normal distribution to drought indicator with interval regression leading to a 

imprecise normal distribution resulting in probabilities of events in terms of interval grey 

number, a number with known lower and upper bounds but unknown distribution 

information. 

Dissimilarities between the bias-corrected GCM simulations under different scenarios 

after the year 1990 (end of base-line period) result in different system performance 

measures which do not validate the assumptions of equi-predictability of GCMs and equi­

possibility of scenarios, which are made in the analysis by Ghosh and Mujumdar 
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(2007a,b ). An evaluation of climate change impact, in terms of quantification of change 

in hydrologic and climatological variables is performed with respect to the base-line 

period 1961-1990 (http : // sedac.ciesin.columbia .edulddclbaseline/index.html ). Following 

this it is assumed in the present study that the impact of climate forcing will be visible 

after 1990, or in other words after 1990 the change in the climate and hydrologic variable 

will be quantified with respect to those of the base-line period. For appropriate planning 

and adaptation responses, with the passage of time, it is relevant to assess the 

effectiveness of the GCMs in best modeling climate change and also to judge which of 

the scenarios best represent the present situation under climate forcing. The objective of 

this study is to model the uncertainty in climate change derived from different GCMs and 

scenarios by assigning possibility distribution to different GCMs and scenarios, measured 

in terms of their ability in modeling climate change based on their performance in the 

recent past (years 1991-2005) under climate forcing. To do this, we use possibility 

theory, which is an uncertainty theory devoted to addressing devoted to the handling of 

partially inconsistent knowledge and linguistic information based on intuitions. Unlike 

probability, possibility is not computed from a frequency resulting from a sample, but is 

assigned to an event based on intuitive argumentation (Spott, 1999). In the present study, 

such intuition about the future hydrologic condition, is derived based on the performance 

of GCMs with associated scenarios. Based on such intuition, a possibility mass function 

is derived with possibility values assigned to the GCMs and scenarios. ' possibility 

assigned to a GCM' is interpreted here as the possibility with which the future hydrologic 

variable of interest is modeled best by the downscaled output of the GCM. Similarly, 

'possibility assigned to a scenario' denotes the possibility with which the scenario best 

represents the climate forcing resulting in the change in the hydrologic variable. The 

possibility values thus computed are used as wights in deriving a possibilistic mean CDF 

(weighted CDF) of future hydrologic variable for time slices 2020s (years 2006-2035), 

2050s (years 2036-2065), and 2080s (years 2066-2095). The following section presents a 

brief overview on data used and the methodology used in the present study. 
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(http: l/www.mad.zmaw.de/JPCC_DDC/html/SRES_TAR/index.html ). Possibilities are 

assigned to GCMs and scenarios based on their performances in predicting the 

streamflow during years 1991-2005, when signals of climate forcing are visible. The 

possibilities are used as weights for deriving the possibilistic mean CDF for the three 

standard time slices of 2020s, 2050s and 2080s. The following subsection presents the 

details of case-study are and the data used. 

8.2.1.1 Study Area and Observed Streamflow Data 

The Mahanadi river of eastern India, rises on the Amarkantak plateau in the Eastern 

Ghats in central India in Chhatishgarh. It drains most of the state of Chhattisgarh, much 

of Orissa, and portions of Jharkhand and flows east to the Bay of Bengal. The data 

considered for this case-study are the inflow to the the Hirakud dam, which is located on 

Mahanadi river in Orissa (21.32°N, 83.45°E) at east coast of India (Fig. 8.1.2). The 

monthly inflow to Hirakud dam from 1961 to 2005, is obtained from the Department of 

Irrigation, Government of Orissa, India. Due to an absence of any major control structure 

upstream of the Hirakud reservoir, the inflow to the dam is considered as unregulated 

flow. The Mahanadi river is a rain-fed river with high streamflow during June to 

September due to monsoon rainfall, with insignificant contribution from ground water 

during this season. In the non-monsoon season, low rainfall results in low flow 

conditions, compared to which ground water component is significant. Moreover, the 

monsoon flows are important in Hirakud reservoir to meet the demands during the year. 

Thus, the monsoon streamflow is only modeled here using the atmospheric variables 

without considering ground water component. The monthly monsoon flow data of 

Mahanadi at the Hirakud reservoir from year 1961 to year 2005 is used in the analysis. 

Fig. 8.2.2 presents the monsoon flow of the Mahanadi river for the period 1961-2005. 

Box plots are plotted separately for the base line periods (1961-1990) and the recent past 

(1991-2005). It shows a decrease in the stream flow in the recent past with respect to that 

of baseline period which can be considered as an impact of "climate signal". 
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Fig. 8.2.2 Monsoon streamflow of Mahanadi river at Hirakud 

8.2.1.2 Development of the Downscaling Model 

The statistical downscaling model (Ghosh and Mujumdar, 2007c) used in present study 

consists of PCA, fuzzy clustering and relevance vector machine. Selection of the 

predictor is an important step in statistical downscaling. The predictors used for 

downscaling should be (Wilby et al., 1999, Wetterhall et al., 2005): (1) reliably simulated 

by GCMs, (2) readily available from archives of GCM outputs, and (3) strongly 

correlated with the surface variables of interest. Cannon and Whitfield (2002) have used 

MSLP, 500 hPa geopotential height, 800 hPa specific humidity, and 100-500 hPa 

thickness field as the predictors for downscaling GCM output to streamflow. Monsoon 

streamflow can be considered broadly as a resultant of rainfall and evaporation. Rainfall 

is a consequence of Mean Sea Level Pressure (MSLP)(Bardossy and Plate, 1991; 

Bardossy et al., 1995; Hughes and Guttorp, 1994; Wetterhall et al., 2005), geopotential 

height and humidity whereas evaporation is mainly influenced by temperature and 

humidity. Therefore, the present study considers 2m surface air temperature, MSLP, 
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analysis is limited only to the three GCMs (CCSRINIES, Japan; CGCM2, Canada; and 

HadCM3, U.K.) and the two scenarios (IPCC TAR scenarios A2 and B2). The GCM 

outputs are extracted from the IPCC data distribution center 

(http : I lwww .mad .zmaw .del IPCC _ DDCihtm/1 ddc _gcmdata .html ), for the region covering 

all the NCEP grid points. For baseline period 1961-1990, run for A2 and B2 scenarios are 

same as they are forced with the same 20th century forcing. The A2 storyline and 

scenario family describes a very heterogeneous world. The underlying theme is self­

reliance and preservation of local identities. Fertility patterns across regions converge 

very slowly, which results in continuously increasing population. Economic development 

is primarily regionally oriented and per capita economic growth and technological change 

more fragmented and slower than other storylines. The B2 storyline and scenario family 

describes a world in which the emphasis is on local solutions to economic, social and 

environmental sustainability. It is a world with continuously increasing global population, 

at a rate lower than A2, intermediate levels of economic development, and less rapid and 

more diverse technological change. While the scenario is also oriented towards 

environmental protection and social equity, it focuses on local and regional levels. The 

expected increase in global temperature for the next century for scenarios A2 and B2 are 

nearly 3.4° C and 2.4 ° C (IPCC, 2000). 

GCM grid points do not match with NCEP grid points and thus interpolation is required 

to obtain the GCM output at NCEP grid points. Interpolation is performed with a linear 

inverse square procedure using spherical distances (Willmott eta!., 1985). For example, 

for the GCM developed by CCSR/NIES, Japan, the grid size is 5.5" latitude x 5.625' 

longitude. The ouput is extracted for the Mahanadi river basin at 16 grid points extending 

from 13.8445' N to 30.4576' N and 78.7500 ' E to 95.6250' E. These values are then 

interpolated to the 25 NCEP grid points. Standardization is performed after interpolation, 

prior to downscaling. The eigen vectors or principal directions obtained from NCEP data 

are used as reference to convert the gridded standardized GCM output to the 

corresponding principal components. Cluster memberships are computed for GCM 

outputs using the cluster centers obtained from NCEP/NCAR reanalysis data. The 

statistical relationship based on RVM developed between climatological variables and 
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streamflow is then applied to the principal components and cluster memberships to 

predict the inflow to Hirakud reservoir. 

It is observed in Ghosh and Mujumdar (2007c) that even after standardisation, the bias is 

not significantly reduced because the methodology may reduce the bias in the mean and 

variance of the predictor variable but it is much harder to accommodate the biases in 

large-scale patterns of atmospheric circulation in GCMs (e.g. shifts in the dominant storm 

track relative to observed data) or unrealistic inter-variable relationships (Wilby and 

Dawson, 2004). To remove such bias from a given downscaled output, for all the GCMs 

and scenarios, the following methodology (Ghosh and Mujumdar, 2007c) is used, which 

is similar to the method used by Wood et al. (2002) for removing biases from the 

predictors: 

• CDFs are calculated for the downscaled GCM-generated and observed streamflow for 

the years 1961-1990 using Weibull's probability plotting position. 

• For a given value of GCM-generated streamflow (XGCM ), the value of the CDF 

( CDFGcM) is computed. 

• The observed streamflow value is obtained from the observed CDF corresponding to 

CDFGCM' 

• The GCM-generated streamflow is replaced by this observed value. 

• The CDFs of GCM-generated and observed streamflow, obtained for the years 1961-

1990, act as reference, and based on these, the correction is applied to the streamflow 

values obtained from the GCM for future. 

The correction for bias involved here is based on equi-probability transformation. From 

the CDFs of GCM simulated variables and observed variables for base-line period 1961-

1990, the rule for the transformation (bias correction with equi-probability 

transformation) is derived, and then used in the future hydrologic scenarios for 

computation of bias free estimates of the hydrologic variable of interest. It should be 

noted that the assumption in this methodology for bias correction is that the bias in 

GCMs remain same in future. After the bias corrections the GCM projections under A2 

and B2 scenarios are used for modeling GCM and scenario uncertainty. 
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8.2.1.4 Modeling Uncertainty with Possibility Theory 

Background to Uncertainty 

Modeling of GCM and scenario uncertainty necessitates use of a number of GCM outputs 

of different scenarios for risk based studies of future hydrologic extremes. One major 

assumption in modeling scenario uncertainty in most available literature (Giorgi and 

Mearns, 2003; Wilby and Harris, 2006; Ghosh and Mujumdar, 2007a,b) is that all 

scenarios are equally likely. This assumption is necessary because of ignorance about 

climate forcing. It is argued here that the signals of climate forcing, following the IPCC 

definition of base-line period (http : 1/sedac.ciesin.columbia .edulddc/baseline/index.html ), 

would be visible because of global warming after the year 1990. For appropriate planning 

and adaptation responses, with the passage of time, it is relevant to assess the 

effectiveness of GCMs in modeling climate change and also to judge which of the 

scenarios represent the present situation best under climate forcing. A methodology based 

on possibility distributions is developed here to model GCM and scenario uncertainty 

with an objective of assignment of possibility values to GCMs and scenarios depending 

on their performance in modeling signals of climate forcing. As a pre-requisite, a brief 

overview of possibility theory is given in the following subsection. 

Possibility Theory 

Possibility theory, founded by Zadeh (1978), is an uncertain theory devoted to addressing 

incomplete information, and partially inconsistent knowledge (Dubois, 2006). It is related 

to the theory of fuzzy sets as a fuzzy restriction which acts as an elastic constraint on the 

values that may be assigned to a variable (Zadeh, 1978). More specifically, ifF is a fuzzy 

subset of a universe of discourse Q = u which is characterized by its membership 

function J.i.F , then a proposition of the form "X is F", where X is a variable taking values 

in n' induces a possibility distribution n X which equates the possibility of X taking the 

value u to J-lp(u) -the compatibility ofu with F. In this way, X becomes a fuzzy variable 

which is associated with possibility distribution TI x in much the same way as a random 

variable is associated with a probability distribution (Zadeh, 1978). A main feature of 

possibility that distinguishes it from probability is that it is mainly ordinal and is not 
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generated by a GCM will not perfectly match the observed CDF, a C value of 1 is nearly 

impossible. Therefore, the results obtained from Eq. (8.2.6) can not be used directly as 

the possibility for a particular GCM and scenario, because according to the properties of 

possibility distribution there should be at least one scenario simulated by any of the 

GCMs with a possibility value 1. To satisfy the property, the results obtained from Eq. 

(8.2.6) for all the three GCMs and associated scenarios, are normalized by dividing the 

C values with the maximum value of C and the normalized value thus obtained is used 

as the corresponding possibility value. 

8.2.2 Results and Discussion 

8.2.2.1 Predicted Streamflow for 1961-1990 using Reanalysis Data 

The observed and predicted (from RVM) monsoon streamflow from June 1961 to August 

1990, along with the scatter plot are presented in Fig. 8.2.3. Wetterhall et al. (2005) have 

tested the long term seasonal mean, and standard deviation for verification of a 

downscaling model. In the present analysis a similar test was performed. The long term 

mean and standard deviation of observed streamflow are 7332.0 Mm3 and 5995.6 Mm 3 

and those of predicted streamflow are 7384.1 Mm 3 and 4607.6 Mm3
, which shows an 

acceptable match in central tendency (mean) but a significant difference in standard 

deviation. RVM based downscaling underestimates the observed high flows. One reason 

for this could be that the regression based statistical downscaling models often cannot 

explain the entire variance of the observed variable (Wilby and Dawson, 2004; Tripathi et 

al., 2006). The bias which is generally observed in the hydrologic variable downscaled 

with GCM outputs is the sum of the bias present in the downscaling model (in the R VM 

based statistical relationship) and in the GCM output.Both of them is adjusted at the end 

of downscaling using CDF matching approach (Subsection 8.2.1.3). 

8.2.2.2 Predicted Streamflow using GCM data 

The calibrated RVY.1 model developed with reanalysis data is used to predict streamflow 

from the outputs of GCMs CCSR/NIES, CGCM2 and CSIRO-MK2 under A2 and B2 

scenario. For validation of the downscaled GCM projections, the CDF obtained using 
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Weibulls's plotting position for the base-line period ( 1961-1990) with the downscaled 

GCM projections is plotted with that of observed streamflow (Fig. 8.2.4). In Fig. 8.2.4, 

CDFs of the downscaled variable derived from different GCM outputs have significant 

deviations from that of the observed data which suggests that bias is not completely 

corrected using standardization and in such a condition, if the bias is not removed, the 

resulting uncertainty in future will not be solely due to modeled climate change but also 

due to the biases present in the GCMs. The bias is removed using the methodology of 

equiprobability transformation presented in Subsection 8.2.1.3. The bias corrected 

streamflow projections with their corresponding CDFs for four time slices, 1991-2005, 

2020s, 2050s and 2080s are presented in Fig. 8.2.5. The figure shows that the CDF of 

streamflow downscaled from one GCM is entirely different from that of another and also 

that dissimilarity exists among two scenarios of any particular GCM although all 

scenarios project a reduction in monsoon flow. Another interesting feature in Fig. 8.2.5 is 

the increased dissimilarity between the GCMs with time. The amount of uncertainty in 

2080s is higher than those of the other time slices. This may point to different climate 

sensitivity among the models due to ignorance about the underlying geophysical 

processes. Such ignorance is addressed here with possibility theory (Zadeh, 1978; 

Dubois, 2006). 

Monsoon (JJAS) Observed SlreamftCAN (Mm3) 

- Observed 
- Predicted from t-.CEP data i'i I 

i.. .~ . L.A t\A. f .Ad. I I 1,: .~~w~w~ V\~~v\11\~NI&Hh 
Sep-61 Scp-65 Sep-70 Sep-75 Sep-60 Sep-65 Sep-90 

Mooth 

Fig. 8.2.3 Observed and predicted streamflow (JJAS) ofMahanadi river 
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pronounced in the initial time period (1991-2005) and therefore the results obtained by 

modeling climate forcing by GCMs are not significantly different from each other. With 

the passage of time, and with a stronger signal of climate change the possibility 

distribution information will be more useful in assessing which of the GCMs is able to 

model the climate change the best and which of the scenarios the regional or local climate 

is actually following. This information, however is conditional on the downscaling 

method used and a change in downscaling model may change the resultant possibility 

distribution. 

Using the axioms of possibility distribution given in Eq. (8.2.3) to (8.2.5) the possibility 

distributions of the GCMs and scenarios are computed separately. For example, the 

possibility of GCM CCSRINIES is given by: 

IT(CCSRINIES ) = IT((CCSRINIES,A2) u (CCSRINIES,B2)) 

= sup(IT(CCSRINIES,A2),IT(CCSRINIES,B2)) 

Similarly the possibility of a scenario (say A2) is given by: 

IT(A2) = IT((CCSRINIES,A2)u (HadCM3,A2)u(CGCM2,A2)) 

= sup(IT(CCSRINJES,A2),IT(HadCM3, A2), IT(CGCM2, A2)) 

(8.2.7) 

(8.2.8) 

(8.2.9) 

(8.2.10) 

The possibility distributions of GCMs and scenarios are plotted separately in Fig. 8.2.6(b) 

and 8.2.7(c), which show CGCM2 to be the GCM having highest possibility value with 

A2 as the most possible scenario for use in regional climate change impact assessment for 

streamflow in the Mahanadi river basin. It should be noted that projection of a hydrologic 

variable other than streamflow may result in a different possibility distribution for the 

same region. A GCM/scenario with a possibility 1 does not imply that the particular 

GCMI scenario perfectly projects climate change, but in this case, it points to an 

ignorance of existence of any better GCMs or scenarios in modeling climate change 

impact on streamflow at the river basin scale. The possibility values obtained for each 

GCM and scenario are used as weights to compute the possibilistic mean CDF ( Fpm) for 

the time slices 1991-2005, 2020s, 2050s and 2080s. 

LL)I(g,s)xFgs 
F - _,g'--=s==-----

pm- LLIT(g,s) 
(8.2.11) 

g s 
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where, II(g,s) and Fgs are the possibility and CDF associated with gth GCM and s1
h 

scenario. We also calculate the range in predictions from the GCM/scenario combinations 

to compare with the possibilistic mean CDF as follows. For each of the discrete 

streamflow values at equal intervals, maximum and minimum CDF values are obtained 

from the CDFs generated using the projections with three GCMs and two scenarios. The 

maximum and minimum CDF values are considered as upper and lower bounds of the 

CDF ([F+,F-]), resulting in an imprecise CDF. The interval between p+ and F- is 

known as the probability box. Without any information regarding signals of climate 

forcing, i.e., in absence of observed streamflow for years 1991-2005, ([F+,F-]) 

represents the band of imprecise CDF within which, all the CDFs generated by various 

GCMs and scenarios have equal possibility (all equal to 1) signifying complete ignorance 

about climate forcing and future scenarios. The upper and lower bounds, possibilistic 

mean CDF and the most possible CDF (CDF for the GCM/scenario with possibility 1) are 

presented in Fig. 8.2.6 for years 1991-2005, 2020s, 2050s and 2080s. It is observed that 

the value of streamflow at which the possibilistic mean CDF reaches the value of 1 for 

years 2020s, 2050s and 2080s are lower than that of base-line period 1961-1990 and also 

reduces with time, which shows reduction in probability of occurrence of extreme high 

flow events in future and therefore there is likely to be a decreasing trend in the monthly 

peak flow. A discussion on these results is presented in the following subsection. 

Table 8.2.1: Performance Measure C for the three GCMs and the two Scenarios 

GCM Scenario c 
CCSRJNIES A2 0.8178 

B2 0.7533 
HadCM3 A2 0.8743 

B2 0.9024 
CGCM2 A2 0.9454 

B2 0.9327 
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Fig. 8.2.8 Effect of variations in predictor variables on Mahanadi streamflow 

Table 8.2.2: yncertainty in Stremflow Projections 

Quantile [Streamflow. (Mm3
)] 

2020s 2050s 20!10s 

CDF nlue UB CDF LB CDF Difference UB CDF LB CDF DitTerence UBCDF LB CDF Difference 

0.25 131 2732 2601 63 3524 3461 76 450!1 4433 
0.50 13!11 6!107 5426 393 6576 6 1!13 491 6690 6 199 

0.75 7329 10144 2!1 15 1639 !1623 69!14 163!1 9120 74!12 
0.90 9!!11 13412 3601 55!14 13009 7425 3375 13070 9695 

0.95 11 313 154!12 4169 7395 13667 6272 4<>75 13263 !15!16 

UB: Upper Bound, LB: Lower Bound 

Table 8.2.3: Streamflow (in Mm 3
) Derived from Possibilistic Mean CDF for Years 

2020s, 2050s and 2080s 
CDF 1961-1990 2020s 2050s 2080s 

Value 
Streamflow Streamflow . Streamflow . Streamflow • Change Change Change 

0.25 2063 911 -55.84% 774 -62.48% 791 -61.66% 

0.50 6283 4926 -21.60% 3254 -48.21% 3180 -49.39% 
0.75 11273 8480 -24.78% 6757 -40.06% 6018 -46.61% 
0.90 15430 12170 -21.28% 8800 -27.69% 7788 -36.01% 
0.95 18148 13773 -24.11% 11350 -37.46% 9725 -46.41% 

·- Change is measured with respect to the streamflow (Col.2) derived from the CDF of 
observed flow for the period 1961-1990. 
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Table 8.2.4: Effects of the Change in Predictor Variables on Streamflow 

Predictors Change in Streamflow (Mm3
) 

(GCM 1961-1990 2080s average due to unit due to total 
simulated) average change in change (Co13-

predictor Col2) in 
variable predictor 

variable 
(1) (2J (3) _(4J (5) 
MSLP (hPa) 1000.82 999.6 186.49 -227.52 
Temperature 303.14 306.63 -2103.00 -7339.47 
(K) 
Specific 0.0156 0.0190 3.44 x 106 11696.00 
Humidity 
(kg/kg} 
Geopotential 5801.06 5869.22 -93.71 -6387.27 
Height (m) 
Total change in -2258.26 
streamflow 

Multiple CDFs derived with different GCMs and scenarios are therefore not useful in 

decision making and an appropriate aggregation of the ensembles resulting in a single 

CDF is desirable. The possibilistic mean CDF is a resultant of all the CDFs derived with 

different GCMs and scenarios with their associated weights. It should be noted that an 

arithmetic mean CDF may also serve the same purpose but it assigns equal weights to all 

the GCMs and the scenarios. The advantage of using possibilistic mean CDF over 

arithmetic mean CDF is that the possibilistic mean CDF assigns weights to GCMs and 

scenarios based on their performances in recent years under climate forcing. Most 

possible CDF (i.e., CDF with the highest possibility value) is also another option to be 

used in decision making, but this does not consider the projections derived with other 

GCMs and scenarios and at the same time it is also not guaranteed that the GCM under a 

scenario which performs best in the recent past of fifteen years will always perform better 

than other GCMs in future. In the present study, assignment of weights based on 

performance, resembles the Bayesian approach developed by Tebaldi et al. (2004, 2005). 

The differences between the two approaches are: (1) Bayesian model assigns weights to 

GCMs based on the bias in their simulations for baseline period, whereas the possibilistic 
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model corrects for the bias in GCM simulations and assigns weights based on their 

performance in the recent past after the baseline period when the signals of climate 

forcing are visible, and (2) Bayesian approach does not assign weights to scenarios and 

considers equal possibilities of scenarios, whereas the present model assigns different 

possibility values to different scenarios. 

Table 8.2.3 presents the values of streamflow corresponding to possibilistic mean CDF 

values of 0.25, 0.5, 0.75 and 0.9 for the periods 2020s, 2050s and 2080s. The results 

show that the monsoon flow of Mahandi river is likely to reduce in future. The reduction 

of the flow is quantified with respect to the observed flow of base-line period 1961-1990. 

Significant changes are observed in the low flow conditions for the periods 2020s, 2050s 

and 2080s. For the high flow condition (flow corresponding to the CDF value of 0.95) the 

change is most significant for the period 2080s. An earlier study (Rao, 1995) on 

Mahanadi river also observed a decrease in monsoon streamflow for the historic period. 

One possible reason for such a decreasing trend reported in that study is the significant 

increase in temperature due to climate warming. Analysis of instrumental climate data 

has revealed that the the mean surface temperature over India has increased at a rate of 

about 0.4 o C. per century (Rao, 1995), which is statistically significant. The increasing 

trend of temperature in the Mahanadi river basin due to climate change is even more 

severe. Rao and Kumar (1992) have found that the surface air temperature over this basin 

is increasing at a rate of 1.1 o C per century, which is more than double the rate of 

increase for entire India. In the present study, the effects of the possible changes in 

predictor variables MSLP, geopotential height at 500hPa, surface specific humidity and 

surface temperature on the streamflow are analyzed individually and are presented in Fig. 

8.2.8 for the most possible experiment, CGCM2 under A2 scenario. Significant change is 

not observed in streamflow due to the change of MSLP. Also there is no significant trend 

in the time-series of MSLP simulated by the GCM for the Mahanadi basin. The 

correlations of streamflow with temperature and geopotential height are negative whereas 

it has a positive correlation with specific humidity. The time series plots of temperature, 

specific humidity and geopotential height have a high increasing trend. Therefore the 

effect of temperature and geopotential height are negative and the effect of specific 

humidity is positive towards the change in monsoon streamflow of Mahanadi river. 
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Details of the analysis are tabulated in Table 8.2.4 with the change in the average values 

of predictor variables in 2080s with respect to that of base-line period. It is observed that 

the summation of individual effects of the predictor variables results in a net decrease in 

streamflow which is also reflected in Fig. 8.2.7 and Table 8.2.3. It should be noted that 

the analysis presented in Table 8.2.4 presents approximate change in streamflow and the 

possible reasons behind such change. As the correlation between the predictor variables 

is not considered in Table 8.2.4 and also the average of the predictors over all the GCM 

grid points on Mahanadi basin is considered without accounting for them individually, 

this analysis can not give the accurate estimates. It is however helpful in pointing out the 

possible reasons of decrease in streamflow. The analysis suggests that increases in 

temperature and geopotential height are possible reasons for decrease in streamflow. 

With the increase of surface temperature, the specific humidity increases but such an 

increase in humidity is not sufficient to nullify the effect of change in the other predictor 

variables. In a recent study for the same region (Orissa meteorological subdivision), 

Ghosh and Mujumdar (2007a, b) have also found an increasing trend of extreme 

meteorological drought which resembles the trend in projections of Mahanadi streamflow 

in the present study. Simultaneous occurrence of reduction in Mahandai streamflow and 

increase in extreme drought pose a major challenge for water resources engineers m 

meeting water demands in future. 

The results presented in this work are obtained for the RVM based downscaling model 

and it should be noted that a change in the downscaling technique may alter the results. 

Use of multiple downscaling techniques in modeling downscaling uncertainty should 

therefore be incorporated in assessment of hydrologic impacts of climate change. A 

limitation of the work presented here is that the methodology does not consider the 

uncertainty due to the use of multiple downscaling models. Another limitation of the 

model is that the Third Assessment Report (TAR) data have been used in the present 

study which have very recently been replaced by Assessment Report 4 (AR4) data. Use 

of AR4 data involves substantially larger multi-model ensembles (of 17 GCMs) which 

may result in a more credible outcome. The difference between the possibility values for 

different GCMs and scenarios is very low because of the low dissimilarity between the 

projections simulated by different climate models for the validation period 1991-2005. 

58 



are constructed either by resampling from the observed variable distribution (conditional 

on the circulation pattern produced by a GCM), or by first generating synthetic sequences 

of weather pattern using Monte Carlo techniques and resampling from the generated data. 

The mean, or frequency distribution of the local climate is then derived by weighting the 

local climate states with the relative frequencies of the weather classes. Bardossy et al. 

(1995) used a fuzzy rule based technique for classification of Circulation Patterns (CP) 

into different states. Stochastic models such as Markov Chains may be used to predict 

precipitation from different states of classified circulation patterns (Bardossy and Plate 

1991). The most popular approach of downscaling is the use of transfer function which is 

a regression based downscaling method that rely on direct quantitative relationship 

between the local scale climate variable (predictand) and the variables containing the 

large scale climate information (predictors) through some form of regression. Individual 

downscaling schemes differ according to the choice of mathematical transfer function, 

predictor variables or statistical fitting procedure. Todate, linear and non-linear regression 

(Wilby et al., 1998a), artificial neural network (Wilby et al., 1998b, Tripathy and 

Srinivas, 2005), fuzzy Rule based system (Bardossy et al., 2005), Suuport Vector 

Machine (Tripathy et al., 2006), analogue method (Wetterhall et al.; 2004, Gutierrez et al. 

2004) etc. have been used to derive predictor-preditand relationship. A combination of 

classification based weather typing and transfer function method for downscaling may be 

found in Ghosh and Mujumdar (2006), where, Principal Component Analysis (PCA), 

fuzzy clustering and linear regression with seasonality term have been used for 

downscaling mean sea level pressure to precipitation. A completely different and unique 

approach of inverse modeling may be found in Cunderlik and Simonovic (2004) and 

Prodanovic et al. (2005), where critical meteorological situations are found from critical 

hydrologic events. In the final stage, the frequency of critical weather situations is 

investigated under future climatic conditions obtained from GCM. Since the analysis of 

GCM outputs is one of the last steps in this methodology, the approach allows easy 

updating, when new and improved GCM outputs become available. Detailed discussions 

on different models used for downscaling, may be found in Leavesley (1994) and 

Prudhomme et al. (2002). 
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Climate change impact assessment models developed based on GCM output are 

subjected to a range of uncertainties due to both 'incomplete knowledge' and 'unknowable 

future scenario' (Hulme and Crater, 1999; New and Hulme, 2000). 'Incomplete 

knowledge' mainly arises from inadequate information and understanding about the 

underlying geophysical process of global change, leading to limitations in the accuracy of 

GCMs. This can also be termed as GCM uncertainty. Uncertainty due to 'unknowable 

future scenario' is associated with the unpredictability in the forecast of future socio­

economic and human behavior resulting in future Green House Gas (GHG) emission 

scenarios, and can also be termed as scenario uncertainty. Scenarios are alternative 

images of how the future might unfold and are an appropriate tool with which to analyze 

how driving forces may influence future emission outcomes and to assess the associated 

uncertainties. A basic assumption in the development of a scenario is that all such 

scenarios are equally possible in future. The choice of impact model (structure and 

parameterisation) is also another important source of uncertainty that is increasingly 

recognised. Downscaled outputs of a single GCM with a single climate change scenario 

represents a single trajectory among a number of realizations derived using various 

scenarios with GCMs. Such a single trajectory alone, therefore, can not represent a future 

hyc.lrologic scenario, and will not be useful in assessing hydrologic impacts due to climate 

change. No quantified probability is attached to the simulated outcome of a single GCM 

for a single scenario and thus the approach of downscaling a single GCM output is not 

particularly useful for risk adaption studies (New and Hulme, 2000). In Benestad (2004), 

regional temperature scenarios were presented for northern Europe in the form of 

probability distributions, based on spatially interpolated empirically downscaled trends, 

derived using a multi-model ensemble as well as various downscaling options and it was 

found that spatial warming rate patterns, derived from the individual models exhibit large 

differences. Simonovic and Li (2003, 2004) have shown the uncertainty lying in climate 

change impact studies on flood protection resulting from selection of GCMs and 

scenarios. Available GCM outputs have been used for assessing effectiveness of flood 

protection system by them and it has been concluded that different GCMs provide 

different estimates of the hydrologic parameters. Using several climate change scenarios 
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with several GCMs provides the user of the impact study with a range of possible 

outcomes, but again with no attached probabilities (New and Hulme, 2000). 

New and Hulme (2000), developed a model for scenario uncertainty using Bayesian 

Monte-Carlo approach assuming a prior distribution of the uncertain parameters of the 

climate models. GCM and scenario uncertainty is presented in terms of sensitivity of 

climate change model outputs to streamflow. Similar methodology for sensitivity analysis 

and risk assessment of irrigation demand may be found in Jones (2000). A simple 

probabilistic energy balance model, that samples uncertainty in greenhouse gas 

emissions, the climate sensitivity, the carbon cycle, ocean mixing, and aerosol forcing, 

has been used by Dessai et al. (2005), to quantify uncertainty in regional climate change 

projections. Assignment of global mean temperature probabilities in GCMs through 

pattern-scaling technique has been suggested in that study. In order to combine the 

resulting probabilities, regional skill scores for each GCM, season, and climate variable 

(surface temperature, and precipitation) are devised in 23 world regions, based on model 

performance and model convergence. A range of sensitivity experiments are carried out 

with different skill score schemes, climate sensitivities, and emission scenarios for 

performing sensitivity analysis of regional climate change probabilities. 

The above-mentioned literature on modeling GCM and scenario uncertainty limit 

themselves in representing uncertainty by performing sensitivity analysis of hydrologic 

events to climatic parameters. However, implications of such uncertainty in estimating 

the severity of future extreme events, such as floods and droughts, with a probabilistic 

approach, has not been addressed there. Research into probabilistic forecasts of climate 

change has been advancing rapidly on several fronts. For example, there have been 

systematic evaluations of uncertainties due to climate model projections using 

multimodel ensembles (Raisanen and Palmer, 2001; Giorgi and Mearns, 2003); 

multiensemble experiments with one GCM (Murphy et al., 2004). Bayesian methods 

have been applied to multimodel ensembles to characterize uncertainty and probability 

distribution functions (PDFs) for future climate changes at regional scales (Tebaldi et al., 

2004, 2005). In a more recent study Wilby and Harris (2006) developed a probabilistic 

framework for modeling GCM and scenario uncertainty, where, GCMs were weighted 

according to an index of reliability for downscaled effective rainfall. A Monte Carlo 
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approach was then used to explore components of uncertainty affecting projections for 

the River Thames by the 2080s. It was found that the resulting cumulative distribution 

functions (CDFs) of low flows were most sensitive to uncertainty in the climate change 

scenarios and downscaling of different GCMs. 

The present study attempts to answer the specific question of interpreting the available 

outputs from GCMs with different scenarios in assessing the severity of future drought, 

addressing both GCM and scenario uncertainty. Uncertainty due to structure and 

parametrization is not considered in this work, to keep the focus of the work on modeling 

GCM and scenario uncertainty. An overview of the methodology proposed in this work is 

presented in Fig. 8.3.1. Fuzzy clustering based downscaling (Ghosh and Mujumdar, 

2006) is used for modeling future precipitation using circulation pattern, projected with 

the available GCM outputs. Standardized Precipitation Index (SPI) developed by McKee 

et a!. (1993) is used as a drought index which requires precipitation as an input variable. 

Assuming future SPI to be a random variable at every time step, methodologies based on 

kernel density and orthonormal systems are used to determine the nonparametric pdf of 

SPI, as it is very unlikely that the small sample of available GCM outputs will follow a 

particular parametric distribution. Probabilities for different categories of future drought 

·are computed from the estimated pdf. The methodology is applied to the case study of 

Orissa meteorological subdivision in India to analyze the severity of different degrees of 

drought in future. 

The following sub-section presents details of the case study area, data extraction and 

downscaling technique used for the analysis. 

8.3.1 Data Extraction and Statistical Downscaling 

The Orissa meteorological subdivision located on the eastern coast of India, extended 

from 1 7" N to 22° N in latitude, and 82° E to 8T E in longitude. The monthly area 

weighted precipitation data of Orissa meteorological subdivision in India, from January, 

1950 to December 2002, is obtained from Indian Institute of Tropical Meteorology, Pune 

(http: //www.tropmet.res.in ). This data set is used in the downscaling as predictand. 

Primary source of this data is the India Meteorological Department (IMD). Selection of 

predictor is an important step in statistical downscaling. 
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Fig 8.3.1 Overview of the Method 

The predictors, used for downscaling (Wilby et al., 1999; Wetterhall et al., 2005; Tripathi 

et al., 2006) should be: (1) reliably simulated by GCMs, (2) readily available from 

archives of GCM outputs, and (3) strongly correlated with the surface variables of 

interest. Precipitation can be related to air mass transport and thus related to atmospheric 

circulation, which is a consequence of pressure differences and anomalies (Bardossy, 

1997) and thus circulation pattern is used as the predictor for downscaling in most of the 

earlier models (e.g., Bardossy and Plate, 1991; Hughes and Guttorp, 1994; Bardossy et 

al., 1995; Wetterhall et al., 2005 ). Based on these studies, the present methodology uses 

Mean Sea Level Pressure (MSLP) as predictor for downscaling. Gridded MSLP data used 

in the downscaling are obtained from the National Center for Environmental Prediction/ 

National Center for Atmospheric Research (NCEP/NCAR) reanalysis project (Kalnay et 

al., 1996; http: llwww.cdc.noaa.gov/cdclreanalysislreanalysis.shtml). Reanalysis data are 

outputs from a high resolution atmospheric model that has been run using data 

assimilated from surface observation stations, upper-air stations, and satellite-observing 

platforms. Results obtained using these fields therefore represent those that could be 

expected from an ideal GCM (Cannon and Whitfield, 2002). Monthly average MSLP 

from 1948 to 2002 were obtained for a region spanning 15° N- 25° N in latitude and 
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80° E -90° E in longitude that encapsules the study region. Fig. 8.1.2 shows the NCEP 

grid points superposed on the map of Orissa meteorological subdivision. A statistical 

relationship based on fuzzy clustering and linear regression is developed between MSLP 

and precipitation with reanalysis data of MSLP as predictor and observed precipitation as 

predictand. This relationship is used to model the future precipitation using available 

GCM projections ofMSLP. Table 8.3.1 gives a list of GCMs with available scenarios. 

The output ofMSLP ofGCMs with scenarios, as given in Table 8.3.1, are extracted from 

the IPCC data distribution center, for the region covering all the NCEP grid points 

(http : llwww.mad.zmaw.de/JPCC _DDC/html/ddc _gcmdata.html ). 

An overview of the statistical downscaling technique used here to model future 

precipitation from GCM projected circulation pattern is presented in Fig. 8.3.2. The 

method involves training NCEP data of circulation pattern with observed precipitation 

and use of the resulting regression relationship in modeling future precipitation from 

GCM projections. The training involves three steps (Ghosh and Mujumdar, 2006): 

Principal Component Analysis (PCA), fuzzy clustering and linear regression with 

seasonality terms. Standardization (Wilby et al., 2004) is used prior to statistical 

downscaling to reduce systematic biases in the mean and variances of GCM predictors 

relative to the observations or NCEP/NCAR data. The procedure typically involves 

subtraction of mean and division by standard deviation of the predictor variable for a 

predefined baseline period for both NCEP/NCAR and GCM output. The period 1961-

1990 is used as a base-line because it is of sufficient duration to establish a reliable 

climatology, yet not to long, nor to contemporary to include a strong global change signal 

(Wilby et al., 2004). For Orissa meteorological subdivision, MSLP values at 25 NCEP 

grid points are used as predictor which are highly correlated with each other. PCA is used 

to convert them into a set of uncorrelated variables. It was found that 99.7% of the 

variability of original data set is explained by the first 3 principal components and 

therefore only the first three principal components are used for modeling precipitation. 

Fuzzy clustering is used to classify the principal components into classes or clusters. 

Fuzzy clustering assigns membership values of the classes to various data points, and it is 

more generalized and useful to describe a point not by a crisp cluster, but by its 

membership values in all the clusters. 
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The important parameters required for the fuzzy clustering algorithm are the number 

clusters (c) and the fuzzification parameter (m). The fuzzification parameter controls the 

degree of the fuzziness of the resulting classification, which is the degree of overlap 

between clusters. The minimum value of m is 1 which implies hard clustering. Number of 

clusters and fuzzification parameter are determined from cluster validity indices like 

Fuzziness Performance Index (FPI) and Normalized Classification Entropy (NCE) 

(Roubens, 1982). FPI estimates the degree of fuzziness generated by a specified number 

of classes and given by: 

FPI =1- cF-1 

c-1 

where, 

(8.3.1) 

(8.3.2) 

J.L,
1 

is the membership in cluster i of the principal components in time t. NCE estimates 

the degree of disorganization created by a specified number of classes and given as: 

H 
NCE=­

logc 

where, 

1 c T 

H =-II- J.L, x log(J.L,) 
T ;~1 r~t 

(8.3.3) 

(8.3.4) 

The optimum number of classes/ clusters is established on the basis of minimizing these 

two measures. The clustering becomes non-fuzzy when FPI=O and fully fuzzy when 

FPI=1 (Guier and Thyne 2004). The value ofFPI should be chosen in such a way that the 

resulting clustering is neither too fuzzy nor too hard. Guier and Thyne (2004) have 

recommended a FPI value of 0.25 for the purpose of selection of number of clusters and 

fuzzification parameter in fuzzy clustering. In this work, FPI and NCE are plotted with 

number of clusters c, for different values of fuzzification parameter, m (Fig. 8.3.3). It is 

found that FPI value of 0.25 is achieved for m=2.0 and c=2. Ross (1997) also 

recommends a default value of m 2.0. Therefore, the number of clusters is selected as 2 

and in clustering algorithm the value ofm is considered as 2.0. 
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Linear regression is used to model the monthly precipitation with principal components, 

membership values of the principal components in each of the clusters and the cross 

product of membership values & principal components as regressors. An appropriate 

seasonality term is used to capture the seasonality. The linear regression equation is given 

by: 

1-1 K 1-1 K 

~ = C + Lfi. x JL,, + LYk x pclrt + LLP•k x JL, x pckt 
•=I k= l •=I k=l 

with 

c = C 0 + C 1 
X sin(2np/12) + C 2 

X cos(2np/12) 

,8, = ,8,0 + ,8,1 x sin(2np/12) + ,8,2 x cos(2np/12) 

Yk = rZ + r! X sin(2np/12) + r; X cos(2np/12) 

P,k = p,~ + p,~ x sin(2np/12) + p,; x cos(2np/12) 

(8.3.5) 

(8.3.6) 

(8.3.7) 

(8.3.8) 

(8.3.9) 

where, ~ is the precipitation in time t, pck, is the k'h principal component of circulation 

pattern in time t, and JL, is the membership in cluster i of the principal components in 

time t. K and I are the number of principal components used and number of clusters 

respectively. /3,, r k and P;k are the coefficients of JL,, pck, and their product terms, 

respectively. C is the constant term used in the equation. The membership values JL, in 

each cluster are assigned to different points based on fuzzy c-means algorithm. These 

membership values lie between 0 and 1. (J -1) number of clusters are adequate to model 

the regression equation as the sum of the membership values in all the clusters at time t 

is one and thus (J-1) memberships will automatically fix the value of I'h membership 

and therefore the I'h membership will be a redundant input variable to the regression 

model. Seasonality is incorporated by Eqs. (8.3.6-8.3.9), where, p is the serial number of 

the month within a year (p = 1,2,3, ... ,12). Correlation Coefficient (r) between the 

observed and predicted precipitation is considered as the goodness of fit of the regression 

model. Here the r value is obtained as 0.924. Linear regression without fuzzy clustering, 

i.e., only with the principal components obtained from NCEP reanalysis data of MSLP, 

results in a lower r value of 0.803, which shows the importance of fuzzy clustering in the 

improvement of downscaling model fit. 
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period (June, July, August and September) the long term mean and median of observed 

precipitation are 281.4 mm/month and 281.9 mm/month respectively and those of 

predicted precipitation are 281.5mm/month and 283.3mm/month, which shows a good 

match. Similar results are also obtained for dry period. For dry period (months other than 

June, July, August and September) the long term mean and median of observed 

precipitation are 74.9 mrnlmonth and 73.8 mrnlmonth respectively and those of predicted 

precipitation are 74.3 mm/month and 73.6 mrnlmonth. After this verification the model 

(Eqs. 8.3.5-8.3.9) is used for modeling of future precipitation time series for different 

GCMs with different scenarios. 

Table 8.3.1: GCMs Used and Available Scenarios 

GCM Organization Scenarios Available 
CCSRJNIES Coupled Center for Climate Research Studies Al, A2, Bl, B2 
GCM (CCSR) and National Institute for 

Environmental Studies (NIES), Japan 
Second Generation Canadian Center for Climate Modelling IS92a, A2, B2 
Coupled Global and Analysis, Canada 
Climate Model 
(CGCM2) 
HadCM3 Hadley Centre for Climate Prediction IS95a, (GHG+ 

and Research (HCCPR), UK Ozone+Sulphate ), 
A2 

ECHAM4/0PYC3 Max Planck Institute fiir Meteorologie, IS92a, A2, B2 
Germany. 

CSIRO-MK2 Australia's Commonwealth Scientific (IS92a+Sulph), 
and Research Organisation (CSIRO) IS92a, Al, A2, Bl, 

B2 

Table 8.3.2 Bias ofDowns~aled Observed Precipitation Relative to Observed Data 
Mean of Observed Mellll of NC EP Down.•caled Mean of GCM Oownscaled 
Annual Precipitation Annual Precipitation Annual Precipitation 
(1961 - 1'!90).111111 (1961-1990), nun GCM (1%1 - 1990). mm 

Bias= Observed ~ean Annual 
Precipitatioo - Downscaled 

Mean Annual Precipitatton, mm 

CGCM2 ISSH.3 
CCSRINIES 1542.2 

1394.2 1441.6 lladCM3 11 21.4 
ECIIAM4/0PYC3 13R7.H 

CSIRO-MK2 1322.6 

- 164.1 
- 148.0 
272.R 
6.4 
71.6 

GCM grid points do not match with NCEP grid points and thus interpolation is required 

to obtain the GCM output at NCEP grid points. Interpolation is performed with a linear 

inverse square procedure using spherical distances (Willmott et al., 1985). For example, 

for GCM developed by CCSRJNIES, Japan, the grid size is 5.5" latitude x 5.625. 

longitude. The MSLP ouput is extracted for Orissa meteorological subdivision at 16 grid 

points extending from 13.8445. N to 30.4576. N in latitude and 78.75oo· E to 95.6250. 

72 



E in longitude. These MSLP values are then interpolated to the 25 NCEP grid points. 

Statistical relationship (Eqs. 8.3.5-8.3.9) obtained between MSLP and precipitation is 

then applied to to these interpolated NCEP gridded GCM output to model 

precipitation.Similar to CCSR/NIES, all other GCMs as given in Table 8.3.1, are used to 

simulate the precipitation for historic period and to project future precipitation of Orissa 

meteorological subdivision. The eigen vectors or principal directions obtained from 

NCEP data are used as reference to convert the gridded standardized GCM output to the 

corresponding principal components. Therefore weights, or principal directions/ eigen 

vectors are not calculated separately with the output of each of the GCMs, rather the 

same reference principal directions or eigen vectors as obtained from NCEP output are 

used for all of the GCMs. Another alternative approach may be to blend of GCM outputs 

with the NCEP re-analysis data for obtaining a universal set of principal components. For 

validation the bias of annual mean of precipitation as downscaled from differnet 

standardised GCM output relative to observed data for base-line period is presented in 

Table 8.3.2. It is seen that even after standardisation, the bias is not significantly reduced 

because the methodology may reduce the bias in the mean and variance of the predictor 

variable but it is much harder to accommodate the biases in large-scale patterns of 

atmospheric circulation in GCMs (e.g. shifts in the dominant storm track relative to 

observed data) or unrealistic inter-variable relationships (Wilby and Dawson, 2004). 

Discussion on biases of differnet GCMs after downscaling may also be found in Wilby 

and Harris (2006). To remove the biases, the mean of 1961-1990 simulated mean is 

subtracted and observed baseline period mean is added, so that all the models have the 

same mean in the historic period and thus the resulting uncertainty is solely due to GCM 

and scenario uncertainty, and not due to biases present in the GCMs. Fig. 8.3.4 shows the 

future projection of precipitation for wet (June, July, August and September) and dry 

period separately for CCSR/NIES GCM with B2 scenario. It is observed that the 

downscaling model significantly underestimates the inter-annual variability most notably 

in the wet season. A reason for this may be the insensitivity of MSLP in correctly 

modeling precipitation. MSLP can partially explain historic rainfall variation, but an 

improvement of the model is possible if moisture content or humidity is incorporated. In 

the present study the analysis is only limited with MSLP because for most of the GCMs 
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listed in Table 8.3.1, outputs of moisture content or humidity are not available. Fig 8.3.4 

clearly indicates a slight increase in wet period precipitation and severe decrease in dry 

period precipitation, for the particular scenario. The precipitation thus computed for all 

the GCMs with scenarios are converted into suitable drought indicator for examining 

future drought scenario. 
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Fig 8.3.4 Rainfall for Wet and Dry Period with CCSRINIES-B2 Projection 

8.3.2 Drought Indicators 

A drought indicator, briefly defined, is a variable to identify and assess drought 

conditions (Steinemann, 2003). Common indicators are based on meteorologic and 

hydrologic variables such as precipitation, streamflow, soil moisture, reservoir storage, 

and ground water levels. A drought trigger is a threshold value of the drought indicator 

that distinguishes a drought category, and determines when drought response actions 

should begin or end. Drought categories typically represent levels of severity, such as 

"mild, moderate, severe, or extreme drought. Commonly used drought indicators include 

Standardized Precipitation Index (SPI), Palmer Drought Severity Index (PDSI), Crop 
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Moisture Index (CMI), Surface Water Supply Index (SWSI), Reclamation Drought Index 

(RDI), and Deciles. (http: //www.drought .unl.edulwhatislindices .htm ). 

Most of the drought indicators stated above require multiple input data such as 

precipitation, available water content of soil, temperature, snowpack, reservoir storage 

etc. The Standardized Precipitation Index (SPI) is the simplest one which requires only 

precipitation as input and is generally computed for 3, 6, 12, 48 months, with notation of 

SPI-3, SPI-6, SPI-12, SPI-48, respectively. Because ofthe computational simplicity and 

least input requirement SPI is used for drought assessment in the present work. The 

analysis is performed for annual drought and thus SPI-12 ia used for examining the 

drought scenario. A brief overview of SPI is given in the following subsection. 
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Fig 8.3.5 Predicted SPI-12 from GCM Projections with Different Scenarios. The 
Lower Figure gives the Box Plots for Four Years. 

8.3.2.1 Standardized Precipitation Index 

McKee et al. (1993) developed the Standardized Precipitation Index (SPI) for the purpose 

of defining and monitoring drought. SPI is based on the probability distribution of 

precipitation and requires only precipitation as input data. SPI can be defined by the 

value of standard normal deviate corresponding to the Cumulative Distribution Function 

(CDF) value of a precipitation event with a known probability distribution. A common 
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procedure adopted for computing SPI is to fit a gamma distribution to the precipitation 

data, although the Pearson III has also been recommended, and then to transform the data 

to an equivalent SPI value based on the standard normal distribution (Steinemann, 2003). 

Details of the methodology for calculation of SPI may be found in the website of 

Colorado Climate Center, Colorado State University 

(http: 1/ccc.atmos .co lost ate .edulpublspi.pdf ). The standard procedure is as follows: 

1. Fit a Gamma distribution to the time series of non-zero precipitation for each time 

scale of interest (e.g., 3 months, 12 months, 24 months, 48 months, etc.) without 

overlapping of data segments. Compute the parameters of the Gamma distribution. 

2. Compute the value of CDF (G(x)) corresponding to each value of non-zero 

precipitation (x). 

3. Compute the zero precipitation probability (q) from the historical time series. The 

value of CDF (H(x)) for a specific precipitation (x) will be: 

H(x)=q+(1-q)xG(x) (8.3.11) 

4. Compute the value of standard normal deviate corresponding to the value of CDF 

(H(x)). This is the SPI value for the precipitation(x). 

Based on the value, the severity of drought can be assessed and categorized into different 

classes. Table 8.3.3 presents the categories of drought corresponding to their SPI values 

(McKee et al., 1993; Steinemann, 2003). 

The parameters required for estimation of SPI, viz., parameters of Gamma distribution 

and non zero precipitation probability, are estimated based on the observed annual 

precipitation by fitting it to Gamma distribution. Using these parameters, the future 

annual precipitation (computed from monthly precipitation), downscaled from GCM 

output, is converted into SPI-12. The SPI-12 is calculated for all GCMs for available 

scenarios. The projected SPI-12 thus computed in Fig. 8.3.5, which shows that SPI-12 

time series downscaled from one GCM is entirely different from that of another and also 

a considerable dissimilarity exists among two scenarios of any particular GCM. The box 

plot presented in Fig. 8.3.5 presents the sparseness of the SPI-12 values computed from 

different GCMs with scenarios for the years 2020, 2040, 2060 and 2080. A single time 

series of SPI-12 generated from a GCM for a particular scenario represents a single 

trajectory among a number of realizations derived using various scenarios with GCMs 
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and can not by itself represent the future drought condition . Such uncertainty due to 

GCMs and scenarios are modeled in a probabilistic framework to assess the severity of 

possible droughts in future. 

Table 8.3.3: Drought Categories 

Drought Category SPI values 
Near Normal 0 to -0.99 
Mild to Moderate Drought -1.00 to -1.49 
Severe Drought -1.50 to -1.99 
Extreme Drought -2.00 or less 

?::----. llqf .... 
·~ ·--) 

Fig 8.3.6 Pdf ofSPI-12 at Each Time Step 

8.3.3 Modeling GCM and Scenario Uncertainty 

Climate change impact studies on hydrology, based on GCMs, are characterized by GCM 

and Scenario uncertainty. The source of GCM uncertainty lies in inadequate information 

and understanding about the underlying geophysical process of global change leading to 

varied assumptions and limitations in GCM outputs. Unpredictability in the forecast of 

future socio-economic and human behavior resulting different Green House Gas (GHG) 

emission scenarios leads to scenario uncertainty. Modeling of GCM and scenario 

uncertainty necessitates use of a number of GCM outputs of different scenarios for risk 

based studies of future hydrologic extremes. 

In the present work the SPI-12 values computed with downscaled outputs from GCMs, 

are considered as the realizations of the random variable SPI -12 in each year where there 

exists a pdf of SPI-12 in each year (Fig. 8.3.6). The severity of future drought may be 
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studied by estimating the evolution of the pdf of a drought indicator. The simplest 

methodology of such analysis is based on the assumption of normal distribution for future 

SPI-12 in each year. However, it is very unlikely that SPI-12 will follow a normal 

distribution and thus such analysis may lead to erroneous conclusion. In such cases 

nonparametric pdfs estimated by a kernel density function with a suitable smoothing 

parameter are useful, as prior assumption of the data to follow a particular distribution 

can be avoided (Lall et al., 1993). Applications of kernel density estimation for 

determination of pdf for hydrologic variables may be found in Lall (1995), Lall et al. 

(1996), Sharma et al. (1997), and Tarboton et al. (1998). Small sample size, however, 

may not result in accurate estimation of nonparametric pdf, using kernel function. The 

methodology based on orthonormal series (Efromovich, 1999) for determination of 

nonparametric pdf from a small sample, may be used to overcome this drawback. Here, 

we discuss the use of all the three methods (viz., use of a Normal distribution, kernel 

density estimation and orthonormal series) for examining implications on future drought 

scenarios. 
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8.3.3.1 Assumption of Normal Distribution 

The simplest method of modeling a sample of data without pnor knowledge of 

distribution is with an assumption of normal distribution. In the present case, we assume 

no prior information regarding the future distribution of SPI -12 and, for simplicity, 

assume a normal distribution. The results for each GCM and emissions scenario is taken 

as the set of independent realizations of SPI -12 and that this set is used at each time step 

to establish the probability distribution. The values of the parameters of the normal 

distribution, i.e., mean and variance are considered as the sample estimates and are 

obtained from the of SPI-12 projected from different GCMs with scenarios at a particular 

year. As SPI-12, less than -2 indicates extreme drought, the CDF value of SPI-12 at -2 

will give the probability of extreme drought. 

P(ExtremeDrought) = FsPI(-2) (8.3.12) 

Similarly the probability of other categories of drought at a particular year can be 

estimated from the CDF of the SPI-12 at that time. The probability of severe drought, 

mild to moderate drought and near normal condition are given by: 

P(SevereDrought) = FsPI( -1.5)- FsPI (-2) (8.3.13) 

P(MildDrought) = Fsn(-l.O)-Fsp1 (-1.5) (8.3.14) 

P(NearNormal) = Fsn (0)- FsPI ( -1.0) (8.3 .15) 

where P(E) denotes the probability of an event E, and FsPI (x) denotes the value of CDF 

of SPI at x. A major limitation of this method is that there is no guarantee that SPI will 

follow normal distribution. This may lead to erroneous results, but an idea about the trend 

of severity, i.e, whether the probability of extreme events increases or decreases may be 

gathered from this analysis. 

Fig. 8.3.7 shows the average probabilities of drought events for three time slices, years 

2000-2010, 2040-2050 and 2090-2100. Considerable variation in the probabilities of near 

normal condition and extreme drought are seen from years 2000-2010 to 2040-2050. The 

probability of near normal condition is reduced and that of extreme drought is increased 

significantly in the years 2040-2050. Probabilities for mild and severe drought remain 

almost same. Variations in the probabilities of different drought are not significant in the 

later years, 2040-2050 to 2090-2100. This may mean that the assumption of normal 
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Fig 8.3.10 Algorithm for pdf Estimation Using Orthonormal Series Method 

distribution does not result in a correct assessment of drought impacts of climate change 

years farther in future. Fig. 8.3.8 presents the normal probability plot of SPI-12 for three 

arbitrarily chosen years 2007, 2041 and 2093 from the three time slices. For all the cases 

the SPI -12 values deviate significantly from the normal distribution. A similar 

observation may be expected for other years also and thus the probability represented in 

Fig. 8.3.7 is not accurate. To determine the pdf of SPI-12 in a year more accurately, 

kernel density estimation method is used to obtain the nonparametric pdf of SPI-12 for 

each year in future. 

8.3.3.2 Kernel Density Estimation 

Kernel density estimation entails a weighted moving average of the empirical frequency 

distribution of the data. Most nonparametric density estimators can be expressed as 

kernel density estimators (Scott, 1992; Tarboton et al., 1998). It involves the use of kernel 

function (K(x) ), defmed by a function having following property: 

[K(x)dx = 1 (8.3.16) 

A pdf can therefore be used as a kernel function. A normal kernel (i.e., a gaussian 

function with mean zero and variance one) is used here. A kernel density estimator 

( J (x) )of a pdf at x is defined by: 

A n 

f (x) = (nhf1LK((x- x1)1h) (8.3.17) 
/• I 
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where n is the number of observations (here, number of available GCM outputs) and x1 

is the /1
h observation (here, SPI-12), h is the smoothing parameter known as bandwidth, 

which is used for smoothening the shape of the estimated pdf. The selection of bandwidth 

is an important step in kernel estimation method. A change in bandwidth may 

dramatically change the shape of the kernel estimate (Efromovich, 1999). 

Bandwidth for kernel estimation may be evaluated by minimizing the deviation of the 

estimated pdf from the actual one. When the actual pdf is unknown, the conventional 

method is to assume a normal distribution. Although, there are other methods like plug-in 

estimates (Polansky and Baker, 2000) and least square cross validation (Scott, 1992; 

Tarboton et al., 1998), in the present study the bandwidth is estimated based on normal 

distribution for computational simplicity at each of the time step. Thus the optimal 

bandwidth ( fzo) is given by: 

I 

ho = (1.587)on 3 

For non-normal densities CJ is given by (Silverman, 1986): 

a= min{S,JQR/1.349} 

(8.3.18) 

(8.3.19) 

where S is the the sample standard deviation and IQR is the interquartile range. The 

value of bandwidth thus evaluated is used to estimate the pdf of the data series using Eq. 

(8.3.17). This methodology is used to derive the nonparametric pdf for SPI at different 

time steps. By numerical integration the CDF value at SPI of -2, -1.5, -1.0, and 0 is 

estimated. These are used for finding out the probability of different classes of drought in 

future. 

Fig. 8.3.9 presents the probabilities of drought conditions in the years 2000-2010, 2040-

2050 and 2090-2100, as obtained using the kernel density estimation. Although an 

apparent increase in the probability of extreme drought are observed from both the 

methodologies (viz., methods based on the assumption of normal distribution and the 

kernel density estimation), the resulting probabilities are quite different. The difference 

between the probabilities of near normal condition for the years 2000-2010 and 2040-

2050 using the method based on kernel density estimation is not significant whereas a 

larger change has been found for the model based on the assumption of normal 

distribution. A significant change is found for the years 2090-2100 from 2040-2050 in the 
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probabilities of near normal condition from kernel density estimation method, which is 

absent in the plots obtained from the model based on the assumption of normal 

distribution. The probability of extreme drought has a continuous increasing trend in Fig 

8.3.9, which was absent in Fig. 8.3.7. Significant changes are also observed in the 

probabilities of mild and severe droughts. Although the methodology of kernel 

estimation, used in the present work is computationally simple, there are some 

drawbacks: 

1. A large sample can give a better estimate of kernel density estimator. In the present 

analysis, the sample size (19) is small, consisting only of the downscaled SPI of the 

available GCM output. 

2. The bandwidth is estimated by assuming the actual density is normal, which may not 

be valid. 

To overcome these drawbacks a methodology based on orthonormal series is used which 

is an ideal method for estimation of nonparametric pdf from a small sample (Efromovich, 

1999). The next subsections presents the details of the methodology for estimation of pdf 

using using orthonormal series. 

-K 
- o 

i 0.5 
-N 
CJ FD 

-6 -4 -2 
SPI-12 

0 2 4 

~ 
Q. 0.5 

~ 
~ .-!r7 

I I .. L~ Ol_~~~~~~~~~~--~~ 
-8 -6 -4 -2 0 2 4 

SPJ-12 
0.4,--.....,.------,---.------r---.,...---;::::::====;l 

-K 
-o 

i 0.2 
-N 
CJ FD 

ol_--~~~~iJJtilJt~~--~ 
-8 -6 -4 -2 SPI-12 0 2 4 

K - Kernel Density, 0 - Density by Orthonormal Series, N - Density 
assuming Normal Distribution, FD- Frequency Distribution of SPI-12 

Fig 8.3.11 Pdf of SPI-12 for Years 2007, 2041 and 2093 

83 



8.3.3.3 Method of Orthonormal Series 

A pdf from a small sample can be estimated using orthonormal series method which is 

essentially a series of orthonormal functions, obtained from the sample. The summation 

of the series with co-efficients results in the desired pdf. The following subsection 

presents the details of the concept and methodology of the method. 

Concept of Orthonormal Series and Density Estimation 

The methodology based on orthonormal series is used to estimate univariate density of 

data set with small sample size. Mathematical development of the methodology presented 

in this subsection is taken from Efromovich (1999). An orthonormal series is a series of 

orthonormal functions, <l>s(x) and <l> j(x) satisfying Eqns (8.3.20-8.3.21): 

jt>s(x)<l>/x)dx=O 'ils*-} (8.3.20) 

J<<t> /x))2 dx = 1 'ilj (8.3.21) 

Typically a univariate density function of a random variable X may be well approximated 

by an orthonormal series f 1 (x): 

J 

/;(x) = 2:Bj <l>
1
(x) (8.3.22) 

;=0 

where J is called the cut-off, ct>;(x),j = 0,1, ... are the functions of orthonormal system, 

and B
1

, j = 0,1 ,... are the coefficients corresponding to each function. In our case, X is 

SPI-12 simulated values from climate models. For this work, we select as the 

orthonormal series the subset of the Fourier series consisting of cosine functions: 

<l>0 (x)=1 

<l>
1
(x) = J2 cos(1ifx), j = 1,2,3, .... 

(8.3.23) 

(8.3.24) 

The algorithm involved in estimating probability density function based on orthonormal 

series is presented in Fig. 8.3.10. The detailed methodology is discussed in Appendix 3. 

After estimating the pdf numerical integration is performed for evaluating the CDF 

values at critical points of SPI-12 equal to -2, -1.5, -1.0, and 0.0. These are used for 

examining the severity of future drought. 
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Fig 8.3.12 Probability ofDroughts Using Orthonormal Series 

Application and Results 

The pdf of SPI-12 computed using the orthonormal series method is presented in Fig. 

8.3.11 along with frequency distribution of the sample and the pdfs resulting from the 

other two methods for three arbitrarily chosen years 2007, 2041 and 2093 selected from 

the three time slices of years 2000-2010, 2040-2050, and 2090-2100. For all the cases it 

is clear from the figure that a normal pdf fails to model the samples of SPI-12, especially 

the feature of multi-modality, in all the three cases. The pdf obtained using orthogonal 

series closely resembles the shape generated by the frequency distribution. As an 

example, for the year 2007, around zero value of SPI -12 the kernel density estimator 

overestimates the pdf, whereas the pdf generated by orthonormal series estimates it 

reasonably accurately. A similar result is also obtained for the year 2041. For the year 

2093, the pdfs obtained from both the nonparametric methods are nearly the same. One 

possible reason for the difference between the pdfs obtained from kernel density 

estimation and orthonormal series is the improper selection of bandwidth in kernel 

density estimator which may oversmooth or undersmooth the generated pdf. 
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Fig. 8.3 .12 presents the probabilities of drought conditions in the years 2000-2010, 2040-

2050 and 2090-2100, as obtained using orthonormal series based density estimation. The 

results are by and large similar to those of kernel density estimation except for the 

probabilities of mild drought. Kernel density estimation procedure projects a sudden 

increase in the probability of mild drought for the years 2090-2100, whereas such 

significant change is not observed in the results obtained from orthonormal series 

method. From the overall trend in probabilities of all categories of drought, it may be 

concluded that the probability of near normal condition will decrease and the 

probabilities of mild, severe and extreme drought will increase over time, which projects 

the Orissa meteorological subdivision to be more drought-prone in future. From Fig. 

8.3.12, it is observed that significant increases in probabilities are indicated in cases of 

severe and extreme droughts only, which implies that climate change impact is more 

prominent on the extreme hydrologic events. As indicated by these results, impact of 

climate change may also be more severe for the Orissa meteorological subdivision 

because of it's position at the coast of the Bay of Bengal. A slight change in the pressure 

anomaly of the sea can have a severe impact on the precipitation of Orissa, which results 

in increase of hydrologic extremes in that region. Recent past records of Orissa with a 

fluctuating weather condition and the high occurrence of hydrologic extremes show that 

this is the most affected region of India due to climate change 

(www.cseindia.org/programme/geg/pdf/orissa.pdf). 

Some recent studies on the trend of severity of drought for different regions around the 

world suggest that drought-prone areas are increasing worldwide. Andreadis and 

Lettenmaier (2006) have examined drought characteristics over the conterminous United 

States (U.S.) and found an increasing trend of drought in the southwest and parts of the 

interior of the West US. From the monthly data set of global PDSI (Palmer Drought 

Severity Index), Dai et al. (2004) have observed that most parts of Eurasia, Africa, 

Canada, Alaska, and eastern Australia became drier from 1950 to 2002 as large surface 

warming has occurred since 1950 over these regions. Dry area has more than doubled 

(from 12% to 30%) since the 1970s, with a large jump in the early 1980s due to 

precipitation decreases and subsequent expansion primarily due to surface warming. 

Without the warming, the PDSI decreases would have been much smaller and less 
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pervasive. Surface warming due to climate change and green house gas effect may lead to 

a severe drought condition in the present case study area Orissa. Dai et al. ( 1997) and Dai 

and Wigley (2000) have found that the decrease in precipitation is occurring mainly over 

El Nino Southern Oscillation (ENSO) sensitive regions. There is an established evidence 

of climatic teleconnection between ENSO and Indian rainfall (Maity and Nagesh Kumar, 

2006) and thus the impact is more severe for India, especially for the Orissa region, 

because of its coastal position. Therefore, global warming with high surface warming in 

Orissa, sensitivity of precipitation to ENSO and coastal position are possible reasons for 

the trend in the probabilities obtained in this study for different categories of drought. 

The probabilities obtained from the analysis will be useful in computing the expected 

future damage due to drought, and to prepare the policy makers in generating appropriate 

responses. 

8.3.4 General Observations 

The methodology presented in this work deals with the problem of uncertainties due to 

GCMs and scenarios in a climate change impact assessment study. For examining the 

future drought scenario of Orissa meteorological subdivision in India, timeseries of SPI-

12 are obtained from the projections of available outputs of several GCMs with several 

available scenarios. To model the uncertainty in a probabilistic framework it is assumed 

that there exists a pdf of the SPI -12 in each year of simulation. The pdf is estimated using 

nonparametric methods to obtain the probability of different categories of drought in the 

future. The results show an increasing trend in the probabilities of extreme and severe 

drought, in the region in future. 

A limitation of the methodology presented here is that it does not consider the uncertainty 

due to parameterization and the structure of the impact model (GCM) itself, that is 

increasingly recognized in recent years. The other two sources of uncertainty not 

considered here are those due to starting conditions used in GCM simulations and the 

downscaling techniques. Given the hydrologic variable of interest projected from climate 

model runs with different parameter values of impact models or by using different 

downscaling techniques, the basic concepts of the proposed methodology may be used 

for uncertainty modeling. It may be noted that all scenarios are not available under all 
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GCMs, or, in other words, in the IPCC data distribution center does not provide outputs 

for all the scenarios for all GCMs. This leads to some implicit weighting of the GCMs. 

Nonparametric pdf is used in the present study to estimate the probability of occurrence 

of different categories of droughts, under future climate change scenarios. Use of 

parametric pdf, such as the normal distribution does not lead to precise or accurate 

estimate of such probabilities. Modeling SPI assuming normal probability distribution 

should be considered only when the resulting imprecision is modeled. Uses of 

nonparametric pdf by kernel function, orthonormal system have also imprecision 

associated with the smoothing of kernel estimate, and determination of support of 

orthonormal system. Theoretically, SPI -12 can vary from - oo to + oo, but in the present 

analysis, by using a heuristic method its support is fixed and used for pdf estimation. This 

may lead to imprecision in its estimate which is not modeled in the present analysis. In 

such cases, simultaneous accounting of randomness and imprecision or fuzziness, in a 

single integrated model by using the concept of imprecise probability (Zadeh, 2002) is 

useful, where the parameters of the probability distribution are considered as interval 

numbers or fuzzy numbers. Modeling GCM and scenario uncertainty with imprecise 

probability may give more generalized estimates of the probabilities of drought 

conditions, useful in examining future conditions. 

Future scope of research of the present study includes the use of probabilities estimated 

for different categories of drought in water resources systems planning and operation. 

Steinmann (2003) has pointed out that drought indicators and triggers oftep lack 

statistical integrity, consistency among drought categories, and correspondence with 

desired management goals and thus evaluation of indicator for compatibility, consistency 

and applicability is a must before using them in water resources systems models. For 

example, for direct minimization of expected damage through reservoir operation, 

Surface Water Supply Index (SWSI) is more useful than SPI-12 as SWSI includes 

reservoir storage as input variable, but such analysis may involve a downscaling model to 

predict the reservoir inflow also. Use of imprecise probability in modeling GCM and 

scenario uncertainty along with the uncertainties due to parameterization, structure, initial 

value; and use of suitable drought indicator in decision making will be a useful direction 

of research on climate change impact assessment. 
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8.3.5 Remarks 

A methodology of modeling GCM and scenario uncertainty for examining the severity of 

future drought is presented in this work. The drought indicator, SPI-12, projected from 

GCMs is considered to have a pdf in each year in future. The pdfs are estimated with 

nonparametric statistical techniques of kernel estimates and orthonormal system. Results 

are presented in terms of probabilities of different categories of drought in future. The 

methodology does not only represent uncertainty due to different GCM projections, but 

also incorporates it in examining the future drought scenario. Models based on software 

such as MAGICC (www.cgd.ucar.edu/cas/ACACIA/projects/magicc.html) require an 

assumption of prior probability distribution of GHG emission and concentration, which 

may also lead to high imprecision. The methodology presented here does not assume 

such prior probability. The methodology results in an increasing trend in the probability 

of severe and extreme drought for Orissa meteorological subdivision with a decrease in 

the probability of near normal condition. '"It may be concluded from the results that the 

region will be more drought prone due to the effect of climate change. Sources of 

uncertainty other than GCMs and scenarios (e.g., uncertainty due to parameterization, 

initial value, structure, and downscaling method) are ignored in the present study. The 

methodology presented here does not limit its usefulness only for drought prediction. 

Given a suitable index for a hydrologic event the methodology, may be used to examine 

the hydrologic implications of the GCM simulations for the particular event in future. 

8.4 Streamflow Projections for Malaprabha River Basin for IPCC SRES 

Scenarios using SVM Based Downscaling and SWAT Model 

Streamflows in a river basin are likely to vary in future owing to changes in climate and 

consequent changes in hydrometeorological processes, changes in land-use/ land-cover 

patterns and topography of watersheds plausibly due to natural hazards and/or 

anthropogenic factors. This section is concerned with development of a downscaling 

methodology to obtain future projections of streamflows in a river basin. The methods in 

vogue for projecting future streamflows under climate change scenarios can be broadly 

classified into four categories, 1-4: 
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interest today. Thus, the climates constructed by analog scenanos are not reliable 

representations of the greenhouse gas induced warmer conditions projected for future. 

The downscaled scenarios are constructed by translating GCM simulated information 

from coarser scale to finer watershed scale using spatial downscaling models, based on 

the assumption that regional climate is conditioned by climate on relatively larger scale 

(e.g., continental). The spatial downscaling techniques can be broadly classified into 

dynamic downscaling and statistical downscaling. In the dynamic downscaling approach 

a Regional Climate Model (RCM) is embedded into GCM. The RCM is essentially a 

numerical model in which GCMs are used to fix boundary conditions. The major 

drawback of RCM, which restricts its use in climate impact studies, is its complicated 

design and high computational cost. Moreover, RCM is inflexible in the sense that 

expanding the region or moving to a slightly different region requires redoing the entire 

experiment (Crane and Hewitson, 1998). Whereas, the statistical downscaling involves 

deriving empirical relationships that transform large-scale features of the GCM (LF) to 

regional-scale variables (RSV) 

RSV = g(LF) 

where RSV represents predictands such as precipitation, temperature and streamflow; LF 

refers to predictors such as air temperature, relative and specific humidities, geo-potential 

height, and wind velocities at various pressure levels; and g is a downscaling function 

which could be deterministic or stochastic. 

The classical statistical downscaling techniques include weather classification methods, 

weather generators and transfer functions. The simple and commonly used statistical 

downscaling approaches are based on transfer functions, which model relationships 

between predictors and predictand using methods such as linear and nonlinear regression, 

artificial neural networks, canonical correlation and principal component analysis (PCA). 

In this section, the transfer function based statistical downscaling method is chosen for 

determining plausible future scenarios of hydrometeorological variables to drive 

hydrological model, owing to the inherent advantages. 

In methods of category 4, large scale atmospheric variables (LSA V) simulated by GCM 

are directly downscaled to streamflow at river basin scale for the present and future 

climate scenarios using methods such as nonlinear regression and artificial neural 
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networks. These methods do not take into account dynamics of regional hydrological 

processes and the mechanisms governing streamflow generation in a watershed. Hence 

their use may lead to unrealistic simulation of streamflows (e.g., Diaz-Nieto and Wilby, 

2005). Nonetheless, the performance of a couple of models of this category is 

investigated in the present study. 

In· this section, a comparison is presented between future projections of streamflows in 

Malaprabha catchment of Krishna river basin, which are obtained for different climate 

change scenarios, hydrological models and methods for projecting streamflows. Four 

hydrological models (two each based on downscaling methods of categories 3 and 4), and 

four climate change emission scenarios (AlB, A2, B 1 and COMMIT) are considered for 

the analysis. Description of each of the scenarios is given in special report on emission 

scenarios (SRES; Nakicenovic et al., 2000), and all the scenarios are relevant to IPCC's 

fourth assessment report (AR4) (Alley et al., 2007). Simulations for each of the scenarios 

are obtained from the Canadian third generation coupled GCM. 

The two hydrological models considered to determine future projections of streamflows 

by methods of category 3 are Soil and water assessment tool (SWAT) (Neitsch et al., 

2000) and support vector machine (SVM) (Vapnik, 1995, 1998) based empirical model 

(SBEM). The SVM has the advantage of implementing the structural risk minimization 

principle, which is the ability to learn any training set without error. Further, the global 

optimum solution is possible with SVM. 

The two models developed based on methods of category 4 involved use of SVM for 

downscaling LSAV. One of the two models directly downscales LSAV to streamflows in 

the target watershed, and is referred to as direct downscaling model (DDSM). The other 

model downscales LSA V to streamflows in two stages, and is called two-stage 

deterministic downscaling model (TSDDSM). 

8.4.1 Study region and data used 

The catchment of Malaprabha reservoir in the Kamataka state of India is considered for 

case study. It has an area of 2564 km2 situated between 15°30' N and 15°56' N latitudes 

and 74°12' E and 75°15' E longitudes. The source of water for the catchment of 

Malaprabha reservoir is precipitation. The Malaprabha reservoir is one of the major 

lifelines for the arid regions of north Kamataka (possibly the largest arid region in India 
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(1) The data of large set of predictors required for downscaling all the s1x 

hydrometeorological variables (precipitation, maximum and minimum temperature, 

relative humidity, wind speed and solar radiation) considered in the current study are 

readily available from simulations of CGCM3. 

(2) To develop downscaling model, the NCEP data of predictors form input, and the 

observed data of hydrometeorological variables and streamflows form output. For 

projecting future sequences of hydrometeorological variables and streamflows, it is 

necessary to consider GCM data that is consistent with NCEP data. Investigations 

undertaken as part of previous studies (Tripathi et al., 2006; Anandhi, 2007; Anandhi et 

al., 2008, 2009) and current study revealed that the CGCM3 data of predictors are 

consistent with those in NCEP data, and are hence considered reliable for use in climate 

impact study. 

(3) Earlier version of the model (CGCM2) was used to successfully downscale 

precipitation for India in a previous study (Tripathi et al., 2006) and there is a natural 

interest to investigate changes in projections using simulations of the latest version of the 

Canadian model. 

The GCM data and the information on atmospheric flux are re-gridded to a common 2.5° 

NCEP grid using Grid Analysis and Display System (GrADS) (Doty and Kinter, 1993). 

Land use/ land cover map and soil map are procured from the Kamataka State Remote 

Sensing Application Center (KSRSAC), Bangalore, India, prepared based on 

panchromatic (PAN) and linear imaging self scanner (LISS) III merged, Indian remote 

sensing (IRS) satellite images. Modified data of Shuttle Radar Topography mission 

(SRTM) in the form of Digital Elevation Model (DEM) for the study region is procured 

from the International Water Management Institute (IWMI), Hyderabad, India. 

Topomaps of the study region are procured from Survey of India (SOl) at available finest 

scale 1:50,000. 

8.4.2 Methodology 

The methodology followed to amve at future projections of streamflows in the 

Malaprabha catchment using SWAT, SBEM, DDSM and TSDDSM is briefly described 

in this section. Each of the models was calibrated using observed data for the period 1978 

- 1993 and validated for the period 1994 - 2000. Subsequently, future streamflows were 
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generated using the developed model for the period 2001 - 2100, for each of the four 

emission scenarios (AlB, A2, B 1 and COMMIT) considered. 

8.4.2.1 Downscaling LSAVto streamjlows through SWAT model 

The LSAV were downscaled to streamflows through SWAT model in three stages (1-3). 

In stage 1, six SVM models were developed to downscale monthly sequences of LSA V 

to monthly sequences of hydrometeorological variables (precipitation, maximum and 

minimum temperature, relative humidity, wind speed and cloud cover) at target locations 

in the Malaprabha catchment. For precipitation, the target location is centroid of the 

watershed, whereas the same is meteorological station for each of the other five variables. 

In stage 2, k-nearest neighbor (k-NN) technique is used to disaggregate the monthly 

sequences of hydrometeorological variables to daily sequences. Finally, in stage 3, 

SWAT hydrological model is driven by the daily sequences of hydrometeorological 

variables to arrive at future projections of streamflows in the Malaprabha catchment. 

Details pertaining to each of these stages are as follows: 

Table 8.4.1 Probable predictors selected for downscaling predictands. 

Sl. 
Predictand 

Probable predictor(s) selected from N CEP and CGCM3 

No. monthly data sets for downscaling the predictand 

Ta 925, Ta 700, Ta 500, Ta 200, Zg 925, Zg 500, Zg 

1 Precipitation 200, Hus 925, Hus 850, Ua 925, Ua 200, Va 925, Va 
200,prw, ps 

2 Maximum temperature Ta 925, Ua 925, Va 925, LH, SH, SWR, LWR 

3 Minimum temperature Ta 925, Ua 925, Va 925, LH, SH, SWR, LWR 

4 Wind speed Ua 925, Va 925 

5 Relative humidity Ta 925, Hus 925, LH 

6 Cloud cover prw 

Ta 925, Ta 700, Ta 500, Ta 200, Zg 925, Zg 500, Zg 

7 Streamflow 200, Hus 925, Hus 850, Ua 925, Ua 200, Va 925, Va 
200,prw, ps 

Stage 1: Downscaling hydrometeorological variables 

To develop a downscaling model for each hydrometeorological variable (predictand), a 

separate set of probable predictors were identified from the LSA V (Table 8.4.1 ). The 

steps involved in developing each of the six SVM models are as follows: 
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study, grid search procedure (Gestel et al., 2004) is used to find the optimum range for 

each of these two parameters. Subsequently, the optimum values of the parameters are 

obtained from the selected ranges, using the stochastic search technique of genetic 

algorithm (Haupt and Haupt, 2004). It is worth mentioning that sensitivity of SVM 

model's performance to the choice of kernel function is yet to be explored. 

Step 9: Validation of the developed SVM model using feature vectors from the test set as 

input to calibrated model, and comparing model output with contemporaneous observed 

values of predictand. The 'normalized mean square error (NMSE)' is used as an index to 

assess the performance of the model. 

Step 10: Obtaining future monthly projections of the predictand using feature vectors 

prepared from GCM simulations as input to the validated SVM downscaling model, for 

each of the four emission scenarios. 

Step 11: Determining the trend in the projected monthly values of the predictand for each 

scenario by dividing the projected time sequence of predictand into five parts (200 1-

2020, 2021-2040, 2041-2060, 2061-2080 and 2081-2100). 

Stage 2: Disaggregation of hydrometeorological variables 

The SWAT hydrological model chosen for arriving at streamflow projections requires 

daily sequences of hydrometeorological variables as input. For this purpose, the monthly 

sequences of hydrometeorological variables obtained using SVM downscaling models in 

stage 1 are disaggregated to daily scale using k-nearest neighbor (k -NN) technique. 

The disaggregation step can be avoided if daily sequences of LSA V can be directly 

downscaled to daily sequences of hydrometeorological variables in stage 1. However, 

this option was not preferred because (1) some of the LSA V are not simulated by GCM at 

daily scale and (2) the monthly sequences of atmospheric variables simulated by the 

GCM are more reliable than those simulated at daily scale (Prudhomme et al., 2003). 

Before proceeding to describe the proposed disaggregation algorithm, variables are 

defined herein. Let the historical (past) and projected (future) values of predictand be 

denoted by u':n,r,j and u~,T,J, respectively, where the subscripts vh and l:p are indices 

for the past (historical) and future (projected) years ( uh = 1, ... .Nh; up= 1, ... ,Np), 

r denotes the index for the month within the year ( r = 1 ,2, ... , (J) ), and j refers to the 

97 



index for the day within the month r . Nh refers to the number of years of historical 

record (herein Nh = 23 for data from 1978 to 2000), Np refers to the projected period 

(herein, Np = 100 for data from 2001-2100), and ()) represents the number of months 

(=12) in a year. Further, let u~h.r.• denote the monthly mean value of the predictand 

computed using the observed daily values of the predictand in the month r of year vh . 

Similarly, let the monthly mean value projected for the predictand in the month r of year 

up be u~,r.•. 

Dr h 
L Uvh,r,j 

h - j=l 
Uvh,r,•- -=----

Dr 
r = 1, . .. ,t, ... ,()) vh = 1, .. . ,Nh (8.4.1) 

where Dr denotes the number of days in month r . For the calibration period (which 

could be less than or equal to the length of the historical record), the observed value of 

the predictand on day j in month r is expressed as a fraction of the monthly mean value 

of the predictand as: 

h 
Uvh,t,j 

Wvh,r,j =-h-
Uuh,r,• 

j= l , ... ,D, r=l, ... ,w vh=1, ... ,Nh (8.4.2) 

Let w;,,r = {w!ilr,l>'") w!il,r,D) denote the vector containing the fractions of the daily 

values of predictand in month r of year vh. 

The key steps of the proposed algorithm are as follows: 

Step 1: For every projected value of the predictand, the calendar month r is identified. 

Step 2: The conditioning set zr for each month r consists of historical state vectors 

prepared from each of the years of observed record. Historical state vector prepared for 

month r of year vh comprises of the observed monthly values of the predictand for the 

calendar months falling in a window of size M centered on the month r and extending 

over all the years of the historical record. For example, for a window of size one month, 

the conditioning set is Zr = { uf r., ... ,u~h r • , ... , u~ r • } . The window size depends on the 
, , ' , ht ' 

projected trend of the downscaled hydrometeorological variable at monthly scale. 

Window of size one month could be considered if the SVM model projects no change in 
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trend. In the presence of trend, a larger size window (e.g, 3 months) is recommended to 

explore the temporal relationship between a wide range of monthly and daily values of 

the predictand for use in disaggregation. 

Step 3: To disaggregate the projected value of predictand in month r , U~p;r ,• , select its 

k-nearest neighbors from the conditioning set Zr based on the Euclidean distance ~:.uh,r 

p h 
between UVp,r,• and UVh,T,• expressed aS 

~vh,vp=lluCp,r,•- U~h,r,•ll for uh = I , ... ,Nh (8.4.3) 

The number of neighbors k is a smoothing parameter. Lall and Sharma (1996) suggest 

using k equal to .jii;, as a rule of thumb. The k nearest neighbors selected are those most 

· ·1 uP s1m1 ar to vp,r,• . 

Step 4: Weights are assigned to each of the k nearest neighbors using the discrete 

probability mass function p(i) (Lall and Sharma, 1996) given by Eq.(8.4.4). This discrete 

kernel was developed through a Poisson approximation of the probability distribution 

function of neighbors, in the space defined by historical state vectors (i.e., state space 

p 
neighbors). Randomly select a nearest neighbor to Uvp,r,• by constructing cumulative 

density function using p(i) values. 

( ') 1/i p l = k i = 1, .. . ,k (8.4.4) 

IJl/JJ 
j=1 

It is to be noted that p(i) is the same for all the months in the projected period. Let 

u~h r • denote the nearest neighbor. , , 

Step 5: The projected daily values of the predictand for the month r in year t.p are 

obtained by multiplying U~p,r ,• with Wu~.r corresponding to the nearest neighbor u~h,T,•. 
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Stage 3: Projecting streamflows using SWAT model 

In this stage, SWAT hydrological model is driven by daily sequences of 

hydrometeorological variables (determined using disaggregation model) to obtain past 

and future projections of streamflows. The SWAT is a river basin scale hydrological 

model developed for the United States Department of Agriculture (USDA), Agricultural 

Research Service. Being a physically based, semi-distributed, continuous time model, it 

requires numerous inputs and parameters that represent weather, hydrology, soil 

properties, plant growth, nutrients, pesticides, bacteria and pathogens, and land 

management. Since its development in the early 1990s, SWAT has undergone continual 

review and expansion of capabilities. In SWAT, a watershed is divided into multiple 

subwatersheds, which are then further subdivided into hydrologic response units (HRUs) 

that consist of homogeneous land use, management, and soil characteristics. The overall 

hydrological balance is simulated for each subwatershed. 

The SWAT model simulates streamflow using the modified SCS runoff curve number 

method (USDA-NRCS, 2004) or the Green-Ampt method. To apply the SWAT model for 

str~amflow estimation using curve number method, the observed climate variables, 

namely precipitation, maximum and minimum temperature, wind speed and relative 

humidity are used as inputs in addition to other processed inputs such as Digital Elevation 

Model (DEM), land use and soil map. For this analysis, the other inputs to SWAT model, 

such as DEM, landuse/land cover, and soil type are considered to be the same for the past 

and the future scenarios. The Arc View GIS interface of SWAT provides an easy-to-use 

graphical user interface for organizing all the required inputs. Delineating the 

subwatershed boundaries, defining the HRUs, generating SWAT input files, creating 

agricultural management scenarios, executing SWAT simulations, and reading and 

charting of results were all carried out by the various tools available in the interface. 

The SWAT model is calibrated using the data for the period January 1978 to December 

1993, and validated using data for the period 1994-2000. For the sake of calibrating the 

model, sensitive parameters are identified using Latin Hypercube One-factor-At-a-Time 

(LH-OAT) (Morris, 1991) method. The sensitive parameters are those that cause large 

changes in the streamflow generated by the model, when perturbed. The details of the 

LH-OAT method can be found in Griensven (2005). 
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To determine optimal values of parameters, auto calibration of the sensitive parameters 

was carried out using Monte Carlo analysis. For this purpose, the ranges of the selected 

sensitive parameters are divided into initial input range and behavioral range. The initial 

input range is based on theoretical limits of the parameters. Thousand parameter sets, 

containing a fairly broad range of parameter values, are generated from the initial input 

range using independent uniform distributions. SWAT is driven by each of the parameter 

sets and daily data on hydrometeorological variables (i.e, precipitation, maximum and 

minimum temperatures, relative humidity and wind speed) for the period 1978-1993 to 

generate streamflows. For each parameter set, the generated streamflows are compared 

with contemporaneous historical values using eight performance measures (described in 

section 8.4.2.6) to determine the behavioral range of each of the parameters. The 

behavioral range denotes the parameter range for which majority of the performance 

measures have optimal values. Following this, ten thousand parameter sets are generated 

from the behavioral parameter ranges, using independent uniform distributions. 

Subsequently, for each of the ten thousand parameter sets, streamflows generated by 

SWAT for the period 1978-1993 are compared with contemporaneous historical values 

using the eight performance measures. Since there is a possibility of producing 

acceptable results with different parameter sets, the generated stream flows and parameter 

set(s) corresponding to optimal value of each of the performance measures are collated. 

The generated streamflows (corresponding to each one of the collated parameter sets) are 

visually interpreted by comparison with contemporaneous historical streamflows for the 

period 1978-1993. The parameter set for which generated stream flows compared well 

with the historical streamflows is decaled as optimal parameter set. 

For validation, the SWAT model is driven by the optimal parameters and historical daily 

data on hydrometeorological variables for the period 1994 - 2000, and the generated 

streamflows are compared with contemporaneous historical values using the eight 

performance measures. The model is declared acceptable after verifying that the 

generated streamflows compare well with the historical streamflows. 

Subsequently, for each of the four climate change scenarios, the SWAT model is driven 

by the optimal parameters and the daily sequences of downscaled hydrometeorological 

variables for the period 2001 - 2100 (obtained using k-NN disaggregation technique) to 
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generate future projections of daily streamflows. The daily streamflow sequences were 

aggregated to obtain monthly streamflow sequences. 

8.4.2.2 Downscaling LSA V to streamflows using SVM based empirical model (SBEM) 

The proposed method has two stages. The first stage involves downscaling LSA V to 

future projections of hydrometeorological variables (precipitation, maximum and 

minimum temperature, relative humidity, wind speed and cloud cover) at target locations 

in the Malaprabha catchment, following the procedure described for stage-1 in subsection 

8.4.2.1. In the second stage, the hydrometeorological variables are further downscaled to 

streamflows in the Malaprabha catchment using SVM based empirical model (SBEM). 

The SBEM captures empirical relationship between historical values of 

hydrometeorological variables and streamflows. For developing SBEM, 

hydrometeorological variables having significant correlation with streamflows are 

identified using historical data for the period 1978-1993. The historical data on the 

identified hydrometeorological variables are standardized for the period 1978-2000 and 

principal components (PCs), which preserve more than 98% of the variance in the data, 

are extracted. Along the principal directions obtained from the principal component 

analysis, the PCs of future projections of hydrometeorological variables (obtained from 

stage 1) are extracted. The procedure for preparing feature vectors, and calibration and 

validation of the SBEM is same as that described in steps 6 to 9 for stage-1 in subsection 

8.4.2.1. The validated SBEM is driven by optimal parameters and PCs of future 

projections of hydrometeorological variables to obtain monthly streamflow sequences as 

outputs. 

8.4.2.3 Downscaling streamjlows using deterministic downscaling model (DDSM) 

The DDSM involves directly downscaling LSAV to streamflow at target location in 

Malaprabha river basin for the present and future climate scenarios using SVM 

technique. The downscaling procedure is similar to that described for stage-1 m 

subsection 8.4.2.1 . Observed streamflow (instead of precipitation) is considered as 

predictand, while the predictors comprise LSA V from NCEP and GCM datasets (listed in 

Table 8.4.1). 
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8.4.2.4 Downscaling streamjlows using two-stage deterministic downscaling model 

(TSDDSM) 

The TSDDSM executes the task of DDSM in two stages. The information concerning 

future scenarios of hydrometeorological variables and streamflows are obtained from first 

and second stages respectively. 

The first stage involves development of six SVM models to downscale monthly 

sequences of LSA V to monthly sequences of hydrometeorological variables at target 

locations in the Malaprabha catchment for the past (1978-2000) and future (2001-2100) 

periods, following the procedure described for stage-1 in subsection 8.4.2.1. 

The second stage involves development of SVM model to capture empirical relationship 

between model generated data on hydrometeorological variables for the past period 

(1978-1993) (obtained from first stage) and contemporaneous historical streamflows. The 

procedure is similar to that described for development of SBEM in subsection 8.4.2.2, 

except that generated data on hydrometeorological variables replaces its historical 

counterpart. The developed SVM model is used to downscale future projections of 

hydrometeorological variables to future projections of monthly streamflow sequences. 

8.4.2.5 Least-Square Support Vector .Machine (LS-SVM) 

The Least-Square Support Vector Machine (LS-SVM) has been used in this study for 

downscaling. The LS-SVM provides a computational advantage over standard SVM 

(Suykens, 2001; Srinivas and Tripathi, 2008). This sub section presents the underlying 

principle of the LS-SVM. 

Consider a finite training sample ofNpatterns {(xi,Yi),i=l, ... ,N}, where xi is the "i-

th" pattern in n-dimensional space (i.e., x, = [x 11 , ••• , xm ] E ~n ), and it constitutes input to 

LS-SVM, whereas Yi E ~ is the corresponding value of the desired model output. 

Further, let the learning machine be defined by a set of possible mappings x H f(x, w), 

where /0 is a deterministic function which, for a given input pattern x and adjustable 

parameters w ( w E ~ n ), always gives the same output. The training phase of the 

learning machine involves adjusting the parameters w. These parameters are estimated 

by minimizing the cost function 'V L (w, e). 
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N 
1 T 1 ""' 2 \jfdw,e) = -w w +-C L..Jei 
2 2 i=l 

(8.4.5) 

subject to the equality constraint 

i = l, ... ,N (8.4.6) 

where Cis a positive real constant and Y; is the actual model output. The first term of 

the cost function represents weight decay or model complexity-penalty function. It is 

used to regularize the weight sizes and to penalize the large weights. This helps in 

improving the generalization performance (Hush and Home, 1993). The second term of 

the cost function represents penalty function. 

The solution of the optimization problem is obtained by considering the Lagrangian as 

1 T 1 N 2 N {y L(w b e a) = - w w +-C "e · - "a· A. +e. - y.} ,, , 
2 2

L...z L....zz z z 
i=1 i=l 

(8.4.7) 

where ai are Lagrange multipliers and b is the bias term. The conditions for optimality 

are given by 

8L N 
- = w- Ia;¢(x ;)= 0 
aw i=l 

8L N 
-= L:a; =0 
ab i=l 

(8.4.8) 

BL -=a· -Ce. =0 a l l 
e; 

i =1, ... ,N 

i = l, .. ,N 

The above conditions of optimality can be expressed as the solution to the following set 

of linear equations after elimination of w and ei 

(8.4.9) 
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YJ 1 al 1 0 ... 0 

Y2 1 a2 0 1. .. 0 
where y = ;1 = ;a= ;I= (8.4.10) 

YN 1 Nxl aN 00 ... 1 NxN 

In Eq.(8.4.9), .Q is obtained from the application of Mercer's theorem. 

"i/i,j (8.4.11) 

where ¢(·) represents nonlinear transformation function defined to convert a non-linear 

problem in the original lower dimensional input space to linear problem in a higher 

dimensional feature space. 

The resulting LS-SVM model for function estimation is: 

(8.4.12) 

where a; and b • are the solutions to Eq.(8.4.9) and K (xi, x) is the inner product kernel 

function defined in accordance with Mercer's theorem (Mercer, 1909; Courant and 

Hilbert, 1970) and b • is the bias. There are several choices of kernel functions, including 

linear, polynomial, sigmoid, splines and Radial basis function (RBF). The linear kernel is 

a special case of RBF (Keerthi and Lin, 2003). Further, the sigmoid kernel behaves like 

RBF for certain parameters (Lin and Lin, 2003). In this study RBF is chosen to map the 

input data into higher dimensional feature space, which is given by: 

(8.4.13) 

where, CT is the width of RBF kernel, which can be adjusted to control the expressivity of 

RBF. The RBF kernels have localized and fmite responses across the entire range of 

predictors. 

The advantage with RBF kernel is that it maps the training data non-linearly into a 

possibly infinite-dimensional space and thus it can effectively handle the situations when 

the relationship between predictors and predictand is nonlinear. Moreover, the RBF is 

computationally simpler than polynomial kernel, which requires more parameters. It is 
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with local thermodynamic stability and hence are useful as predictors. Temperature 

affects the moisture holding capacity of the atmosphere and the pressure at the point. The 

pressure gradient affects the circulation, which in tum affects the moisture brought into 

the place and hence the precipitation. Higher precipitable water in the atmosphere means 

more moisture, which in tum causes statically unstable atmosphere leading to more 

vigorous overturning, resulting in more precipitation. Lower pressure leads to more 

winds and so more precipitation. At 925 hPa pressure height, the boundary layer (near 

surface) effect is prominent. The 850 hPa pressure height is the low level flow response 

to regional precipitation. The 200 hPa pressure level depicts the global scale effects. 

Temperature at 500 hPa represents the heating process of the atmosphere due to 

monsoonal precipitation which is maximum at mid-troposphere at a constant pressure 

height. Geopotential height represents the pressure gradient which is related to the 

moisture brought into the place and hence the precipitation. Considering these aspects, 

fifteen probable predictors are extracted from the NCEP reanalysis and CGCM3 data 

sets. These are the air temperature at 925hPa (Ta 925), 700hPa (Ta 700), 500hPa (Ta 

500) and 200hPa (Ta 200) pressure levels, geo-potential height at 925hPa (Zg 925), 

500hPa (Zg 500) and 200hPa (Zg 200) pressure levels, specific humidity at 925hPa (Hus 

925) and 850hPa (Hus 850) pressure levels, zonal (Ua) and meridional wind velocities 

(Va) at 925hPa (Ua 925, Va 925) and 200hPa (Ua 200, Va 200) pressure levels, 

precipitable water (prw) and surface pressure (Ps). 

Scatter plots and cross-correlations were used to assess the relationship between (1) 

predictors in NCEP and GCM data sets, and (2) predictors in NCEP data sets and 

streamflow for each of the 2.5° NCEP grid points considered in the study (Fig. 8.4.1). 

The cross-correlations are computed using the three measures of dependence(product 

moment correlation, Spearman's rank correlation and Kendall's tau), to verify if they are 

consistent. It is observed that, (1) there is no distinct non-linearity between the predictor 

variables in NCEP and GCM data sets; (2) all three measures of dependence show near 

equal ranking of probable predictors. Therefore, in the following discussion only product 

moment correlation values are described, without loss of generality; (3) the correlation 

between predictors in NCEP and GCM data sets is generally greater than 0.5 (except for 

Va 200 and Zg 500), indicating that the predictor variables are realistically simulated by 

108 



the GCM; (4) Ta 700, Ta 500, Ta 200, Ua 925, Va 925, Zg 200, Hus 925, Hus 850 and 

prw have positive correlation with the streamflow, while Ta 925, Va 200, Ua 200, Zg 925 

and Zg 500 have negative correlation with the same; (5) the predictor variables Ta 925, 

Ta 700, Ta 500, Ta 200, Zg 500, Zg 200, Hus 925, Hus 850 and prw show an increasing 

trend. The projected increase in trend is high for A2 scenario, while it is least for B 1 

scenario, whereas no trend is discerned with the COMMIT scenario. 

8.4.2.8 Results 

Downscaling LSA V to streamjlows through SWAT model 

The LSA V are downscaled to monthly sequences of the SIX hydrometeorological 

variables (precipitation, maximum and minimum temperature, relative humidity, wind 

speed and cloud cover) at target locations in Malaprabha catchment, following the 

procedure described for stage- I in subsection 8.4.2.1. The sequences of each of the 

downscaled hydrometeorological variables obtained for the past (1978-2000) and future 

periods (2001-2100) are compared with those observed in the study region using mean 

statistics (Fig. 8.4.2). In the figure, results for the past period (1978-2000) are shown in 

(i), whereas the projected variable for the periods 2001-2020, 2021-2040, 2041-2060, 

2061-2080 and 2081-2100, for the four scenarios (AlB, A2, Bl and COMMIT) are 

shown in (ii), (iii), (iv) and (v) respectively. The mean statistic of the observed data is 

modeled fairly well by the downscaling models, but not the variability. Possibly this 

could be because regression based statistical downscaling models often cannot explain 

the entire variance of the down scaled variable (Wilby et al., 2004 ). Exploration of a 

larger data set for calibration and validation of the SVM model could possibly provide 

more insight into this problem. However, in the present study, investigation in this 

direction is constrained by the limitations posed by the available data. 
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Fig 8.4.2 Typical results from the SVM based downscaling model. Results pertaining to 

hydrometeorological variables namely precipitation, maximum and minimum 

temperature, relative humidity, wind speed and cloud cover are represented as a, b, c, d, e 

and f respectively. The circles denote the observed mean monthly value of a 

hydrometeorological variable for 1978-2000, and the darkened square represents the 

mean monthly value of downscaled variable. In the Fig.(i), NCEP and GCM denote SVM 

generated values of the variable for the past period (1978-2000), for input from predictor 

variables in NCEP and GCM data respectively. In (ii), (iii), (iv) and (v) the solid line that 

j oins the circles indicates the historical mean monthly value of the variable, while the line 

connecting the solid squares depicts the mean trend of the variable projected by GCM. 
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of the SWAT and the model was run forming 14 drainage sub-basins in the study region. 

The land-use/land-cover and soil maps of the region are overlaid on each other to identify 

Hydrological Response Units (HRUs). Subsequently, the data of observed climate 

variables are fed into the SWAT, and it is calibrated and validated to model daily 

streamflows. 

u 
0 

40 .-----------------------------------------------------------, 

o Observed Tmax 

-- Oisaggregated Tmax 

1 51 101 151 201 251 301 351 

Julian day 

0 

o Observed Tmin 
-- Disaggregated Tmin 

1 51 101 151 201 251 301 351 

Julian day 

30 .---------------------------------~-----------------------

20 

10 

o Observed precipitation 

--- Disaggregated precipitation 0 
0 

0 0 

iP = 0.631 

51 101 151 201 
Julian day 

0 

0 

251 301 351 

Fig 8.4.3 Observed and disaggregated mean daily maximum and minimum temperatures, 
and precipitation for the validation period from 1994 to 2000 
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In the calibration phase, the performance of SWAT is assessed by comparing streamflow 

generated by the model with that observed at the Malaprabha reservoir at monthly time 

scale. The model, in general, over-predicted streamflow for several months. This could be 

attributed to retention storage in natural depressions/tanks of the catchment, which goes 

unaccounted for in estimating inflows into Malaprabha reservoir every water-year. 

Sensitivity analysis carried out using LH-OAT (described in stage 3 of subsection 

8.4.2.1) revealed that curve number (CN), available water capacity (AWC) of soil, plant 

uptake compensation factor (EPCO) and the soil evaporation compensation factor 

(ESCO) are the sensitive parameters. The initial range (Neitsch et al., 2000) and 

behavioral range of the parameters are listed in Table 8.4.2. 

Table 8.4.2. Ranges of different sensitive parameters considered for calibration of SWAT 

model and optimal values selected for the same. 

Sensitive parameter Initial range Behavioral range parameter value 
selected during 

calibration 
Curve number (CN) - 20% to + 20% of -5% to +5% of CN 75* 

CN (upper limit 
100) 

AWC -0.04 to +0.04 of +1 to +0.04 0.04* 
AWC 

EPCO 0.01 to 1 0.5 to 0.8 0.75 
ESCO 0.01 to 1 0.1 to 0.5 0.4 
* represents the weighted curve number and A WC for the different combinations of soil 

and landuse. 

The possible options to improve the model performance include decreasing the CN and 

increasing the AWC;EPCO and ESCO (Neitsch et al., 2002). The model was calibrated 

empirically to account for retention storage in the region. For each combination of these 

parameters, the streamflows obtained from the SWAT model are compared with those 

observed at the Malaprabha reservoir for the calibration period (January 1978-December 

1993), in terms of eight model performance indicators (described in section 8.4.2.6) to 

arrive at optimal set of parameters. Parameters thus obtained are used for the model 

validation. The correlation between SWAT generated and observed streamflows for the 
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validation period (January 1994- December 2000) was found to be 0.98 (Fig. 8.4.4(i) and 

Table 8.4.3) for the overall time period. 
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Fig 8.4.4. Comparison of observed and model simulated monthly streamflows into 

Malaprabha reservoir for the validation period (1994 -2000). Four models namely 

SWAT, SBEM, DDSM and TSDDSM are used to simulate streamflows. P denotes 

product moment correlation, also called Pearson's correlation coefficient. 
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Results from SEEM 

The SBEM is developed following the procedure given in section 8.4.2.2. During the 

calibration of SBEM for the period January 1978- December 1993, the optimal SVM 

parameters cr and C are estimated as 1650 and 2050 respectively, using NMSE (given in 

section 8.4.2.6) as performance measure. Subsequently, the calibrated model is validated 

for the period January 1994 - December 2000 using the eight performance measures 

(given in section 8.4.2.6). It can be noted from the results presented in Table 8.4.3 and 

Fig. 8.4.4 that the correlation between SBEM generated and observed streamflows for the 

validation period is 0.91 for the overall time period. 

Results from DDSM 

The DDSM is developed following the procedure described in section 8.4.2.3. 

Scatterplots and correlation plots are prepared for selecting potential predictors from 

LSA V, and the trend in LSAV is also examined. The potential predictors selected based 

on this analysis are given in Table 8.4.4. 

Table 8.4.4. Potential predictors selected as inputs for directly downscaling streamflow 

usingDDSM 

Potential predictors selected 

Probable Predictors Serial number of 2.5° NCEP 
Name grid point shown in Fig. 

8.4.1 
Ta200 2 

Ta 925, Ta 700, Ta 500, Ua 925 123456789 
Ta 200, Zg 925, Zg 500, Ua 200 123456789 
Zg 200, Hus 925, Hus 850, Va 925 1 
Ua 925, Ua 200, Va 925, Hus 925 123467 
Va 200, prw, ps Hus 850 1234569 

prw 123456789 

For the calibration period (January 1978- December 1993), the optimal SVM parameters 

cr and C are estimated as 39 and 1627 respectively, using NMSE (given in section 

8.4.2.6) as performance measure. Adopting these values, the model is validated for the 

period January 1994 - December 2000 using the eight performance measures (given in 

section 8.4.2.6). It can be noted from the results presented in Table 8.4.3 and Fig. 8.4.4 
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that the correlation between DDSM generated and observed streamflows for the 

validation period (January 1994- December 2000) is 0.84 for the overall time period. 

Results from TSDDSM 

The TSDDSM is developed following the procedure described in section 8.4.2.4. Scatter 

plots and cross-correlations were used for the selection of potential predictors. They 

indicated (1) no distinct non-linearity between the NCEP- and GCM-downscaled 

predictor variables, and product moment correlation to be sufficient for the analysis; (2) 

high correlation between NCEP-downscaled and GCM-downscaled predictors; (3) 

positive correlation of streamflow with precipitation, relative humidity, wind speed and 

cloud cover, and negative correlation with maximum temperature. The correlation of 

minimum temperature with streamflow is found to be negligible. 

For the calibration period (January 1978- December 1993), the optimal SVM parameters 

cr and C are estimated as 37 and 2040 respectively, using NMSE (given in section 

8.4.2.6) as performance measure. Adopting these values, the model is validated for the 

period January 1994 - December 2000 using the eight performance measures (given in 

section 8.4.2.6). It can be noted from the results presented in Table 8.4.3 and Fig. 8.4.4 

that the correlation between the observed monthly streamflows, and those simulated from 

TSDDSM is 0.82 for the overall time period. 

Comparison of model results in reproducing the historical streamflows 

The capacity of each of the four models to predict long-term monthly mean streamflow in 

the Malaprabha basin is evaluated for monsoon and non-monsoon seasons using eight 

performance measures (described in section 8.4.2.6) and visual comparisons based on 

time series plots, mean monthly plots and log-log scatter plots (Figs. 8.4.4- 8.4.7). The 

values of performance measures in Table 8.4.3 indicate that, all the models produced 

good results. For the monsoon season, among the four models SWAT produced best 

results for both calibration and validation periods. The performance of SWAT is followed 

by that of DDSM, SBEM and TSDDSM for the calibration period, whereas for validation 

period the performance of SWAT is followed by that of SBEM, DDSM and TSDDSM. 
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In order to compare the models' capabilities in simulating the dynamics of monthly 

streamflow series, the monthly streamflow values generated using different models are 

analyzed and correlated with observed values using a linear regression equation Y = mX 

+c. In the equation, Y represents the model generated streamflow, and X is the observed 

streamflow, and m and care constants representing the slope and intercept, respectively. 

The log-log scatter plots and the results of regression analysis are shown in Figs. 8.4.6 

and 8.4.7. Scrutiny of results shows that: 

(1) For all the four models, generated streamflows correlated well with observed 

streamflows. Among the models, SWAT's performance was the best (with P = 0.96) 

during monsoon season, while SBEM' s performance was the best during the non­

monsoon season, in both calibration and validation periods. For the calibration period, the 

performance of SWAT is followed by that of DDSM, SBEM and TSDDSM, which had P 

values of0.87, 0.82 and 0.80 respectively. The SWAT and SBEM (methods of category 

3) performed better than DDSM and TSDDSM (methods of category 4) during monsoon 

season in validation period. In general, during non-monsoon season in calibration and 

validation periods, the P values obtained for models are greater than 0.75 in all cases 

except DDSM for which P is equal to 0.62. 

(2) The differences in values of slope and intercept are not significant for the models. The 

value of intercept is generally less than 15% of the mean seasonal streamflow value for 

all the models. SWAT has the least value of intercept for monsoon season, while SBEM 

has the least value of intercept for non-monsoon season during the calibration and 

validation periods. The slopes are all within ±11% of the 1:1 line for SWAT for the 

monsoon season and SBEM for the non-monsoon season. A close look at the differences 

among the models reveals that the SWAT and SBEM models have smaller bias in the 

regression slope and intercept, when compared to DDSM and TSDDSM. 

The results show that among the four models, SWAT, SBEM and DDSM can reproduce 

historical (observed) monthly streamflow series with an acceptable accuracy compared to 

TSDDSM. It must, however, be noted that the purpose here is not to discuss in detail 

which model is superior in simulating historical streamflow values. The main purpose is 
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to check how diverse the model results are with respect to historical and future climate 

scenanos. 

Comparison of model results in predicting future streamjlows for changed climates 

The mean annual, mean monsoon and mean non-monsoon streamflows projected in 

Malaprabha catchment for four climate change scenarios (AlB, A2, Bl and COMMIT) 

are analyzed for the period 2001-2100. For this purpose, the future projections of 

streamflow for each scenario are divided into five parts (200 1-2020, 2021-2040, 2041-

2060, 2061-2080 and 2081-2100). For each part, the percent change in projected mean 

streamflow with respect to its historical counterpart is computed for the four climate 

change scenarios. The results are shown in Figs. 8.4.8 and 8.4.9, and Table 8.4.5. 

Table 8.4.5. Percentage change in mean annual, mean monsoon and mean non-monsoon 

streamflows projected with respect to their historical counterparts for the different models 

and scenarios used (AlB, A2, Bl and COMMIT). 

Season Model Name 
Percentaf e change in streamflow from 2001-21 00 
AlB A2 B1 COMMIT 

SWAT 5 to 108 5 tol50 12 to 60 -3 to 20 

Annual 
SBEM 1 to 44 -1 to 65 7 to 19 -2 to 8 
DDSM 0 to 37 -4 to 59 1 to 13 0 to -2 

TSDDSM 11 to 364 14 to 581 14 to 175 -6 to 24 
SWAT -19 to 57 -17 to 96 -16 to 21 -24 to -13 

Monsoon 
SBEM 0 to 46 1 to 69 3 to 20 -5 to 3 
DDSM -7 to 30 -10 to 53 -2 to 12 -7 to5 

TSDDSM 13 to 403 16 to 641 12to 198 -8 to 28 
SWAT 117 to 346 105 to 391 142 to 245 98to 174 

Non- SBEM 9 to 32 -9 to 46 26 to 16 13 to 30 
monsoon DDSM 33 to 71 21 to 88 16 to 18 29 to 11 

TSDDSM -1 to 185 6 to 34 25 to 63 2 to 5 

In Fig. 8.4.8 the horizontal axis is divided into four branches. Each branch represents the 

result for one climate change scenario and three models. The three lines shown against 

each branch represent the results of SWAT, SBEM and DDSM models. It can be seen 

form the figure that at the annual level there is a wide range of differences between 

streamflows simulated by the models for each climate scenario considered. Results of 
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Fig 8.4.8 . Comparison of changes projected across models (SWAT, SBEM and DDSM) 

for mean annual, mean monsoon and mean non-monsoon stream flows for SRES A 1 B, 

A2, B 1 and COMMIT scenarios. 
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The percent change in projected mean streamflow with respect to its historical 

counterpart for all the four scenarios are plotted for each of the three models namely 

SWAT, SBEM and DDSM for mean annual, mean monsoon and mean non-monsoon 

streamflows in Fig. 8.4.9. It can be observed from these plots that, among the three 

models, SWAT model has the maximum variability between the four scenarios 

considered at annual, monsoon and non-monsoon seasons. The variability of SWAT is 

followed by that of SBEM and DDSM. It can be observed that the increase in trend is 

more after 2060 for AlB and A2 scenarios. 

The projected increase in streamflow is high for A2 scenario, whereas it is least for B 1 

scenario. The scenario A2 has the highest concentration of equivalent carbon dioxide 

(C02) equal to 850 ppm, while the same for AlB, B 1 and COMMIT scenarios are 720 

ppm, 550 ppm and ~ 370 ppm respectively. Rise in the concentration of equivalent C02 

in the atmosphere causes the earth's average temperature to increase, which in turn 

causes increase in evaporation especially at lower latitudes. The evaporated water would 

eventually precipitate. Increase in precipitation results in increased streamflow. In the 

COMMIT scenario, where the emissions are held the same as in the year 2000, no 

significant trend in the projected future streamflow could be discerned. 

The statistical significance of trend in the projected streamflow scenarios are assessed 

using null hypothesis considering 99% confidence level. For the test it is assumed that 

the variances of past and projected streamflows are unknown and unequal. In the null 

hypothesis the mean streamflow for the past (1978-2000) and the projected future periods 

(2001-2020, 2021-2040,2041-2060,2061-2080 and 2081-2100) are assumed to be equal. 

The test statistic, T, is computed using Eq. (8.4.22) (Kottegoda and Rosso, 1998), which 

has an approximate t-distribution with u degrees of freedom given by Eq.(8.4.23). 

T= (Y-yp) 

J< 0'~ IN)+ ( 0'~ /NP) 
(8.4.22) 
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(8.4.23) 

where y and y P are estimated means of the observed and the projected streamflows 

respectively, a-; and a-~ are respectively the standard deviations of the observed and 

projected streamflows, N P (=20) is sample size of projected streamflows considered for 

estimating T. 

Results are presented at annual scale in Table 8.4.6. It can be seen that on annual scale, 

the streamflow is projected to increase during 2021-2100 for AlB, A2, and B1 scenarios, 

and during 2061-2100 for COMMIT scenario by SWAT. In the case of SBEM, the 

streamflow is projected to increase during 2041-2100 for AlB scenario, and during 2061-

2100 for A2 and B 1 scenarios. In the case of DDSM the streamflow is projected to 

increase during 2061-2100 for A2 scenario, and during 2081-2100 for AlB scenario. No 

trend was discerned with B 1 and COMMIT scenarios. 

Table 8.4.6. Results of trend analysis for annual streamflows using null hypothesis 

considering 99% confidence level. The symbols+ and 0 denote 'increase' and 'no 

change' respectively. 

Model Scenario 
Duration (in years) 

2001-2020 2021-2040 2041-2060 2061 -2080 2081 -2100 
SRES 

0 + + + + 
Al B 

SWAT SRESA2 0 + + + + 
SRES Bl 0 + + + + 
COMMIT 0 0 0 + + 

SRES 
0 0 + + + 

AlB 
SBEM SRESA2 0 0 0 + + 

SRES Bl 0 0 0 + + 
COMMIT 0 0 0 0 0 

SRES 
0 0 0 0 + 

AlB 
DDSM SRESA2 0 0 0 + + 

SRES Bl 0 0 0 0 0 
COMMIT 0 0 0 0 0 
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8.4.2.9 Summary 

Owing to the availability of a number of GCMs, climate change scenarios and methods 

used for translating GCM information from coarser to finer scale, there is uncertainty in 

their choice. In this section, a comparison is presented between future projections of 

streamflows in Malaprabha catchment of Krishna river basin, which are obtained for four 

models (two each based on methods of categories 3 and 4), and four climate change 

emission scenarios (AlB, A2, B 1 and COMMIT). Simulations for each of the scenarios 

are obtained from the Canadian third generation coupled GCM. The downscaling 

methods of category 3 use hydrological models, whereas those of category 4 do not use a 

hydrological model. Support vector machine (SVM) is chosen as downscaling technique, 

owing to its inherent advantages. 

The two hydrological models considered to determine future projections of streamflows 

by methods of category 3 are Soil and water assessment tool (SWAT) and support vector 

machine (SVM) based empirical model (SBEM). The two models developed based on 

methods of category 4 involved use of SVM for downscaling LSAV. One of the two 

models directly downscales LSA V to streamflows in the target watershed, and is referred 

to as direct downscaling model (DDSM). The other model downscalcs LSA V to 

streamflows in two stages, and is called two-stage deterministic downscaling model 

(TSDDSM). 

Among the models, SWAT's performance was found to the best during monsoon season, 

while SBEM's performance was the best during the non-monsoon season, in both 

calibration and validation periods. For the calibration period, the performance of SWAT 

is followed by that ofDDSM, SBEM and TSDDSM. The SWAT and SBEM (methods of 

category 3) performed better than DDSM and TSDDSM (methods of category 4) during 

monsoon season in validation period. 

On an annual scale, the streamflow is projected to increase during 2021-2100 for AlB, 

A2, and Bl scenarios, and during 2061-2100 for COMMIT scenario by SWAT. In the 

case of SBEM, the streamflow is projected to increase during 2041-2100 for AlB 

scenario, and during 2061-2100 for A2 and Bl scenarios. In the case of DDSM the 
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streamflow is projected to increase during 2061-2100 for A2 scenario, and during 2081-

2100 for AlB scenario and no trend was discerned with B1 and COMMIT scenarios. 

A large uncertainty is observed in predictions of future streamflows in the river basin due 

to the choice of method for generating streamflow projections, climate scenario and 

hydrological model considered, even though the models perform equally well in 

reproducing the monthly historical streamflows. 

The present study brings out the uncertainties existing in the choice of method for 

generating streamflows, climate scenario and hydrological model considered. The 

uncertainties in the choice of downscaling methods and GCMs should also be considered 

to provide more general conclusions on change in hydrological response of the river 

basin in climate change scenarios. Extended research in this direction is underway. 

9. Conclusions and Recommendations for Future Studies 

Methodologies are developed in this project work to assess the impact of climate change 

on rainfall and streamflow at river basin scales, and to address the uncertainties involved 

in such assessment. Results are provided with an aim to help the policy makers in 

developing adaptive responses lo climate change. Specifically the following problems 

have been dealt with in this project: 

a. Impact of climate change on Mahanadi streamflow, 

b. Impact of climate change on rainfall and meteorological droughts in Orissa 

meteorological subdivision, 

c. Impact of climate change on streamflow of Malaprabha river, in the Krishna 

riverbasin, and 

d. Uncertainties associated with the future projections. 

The following conclusions are drawn from the studies: 

1. The methodologies for downscaling and addressing uncertainties 

developed in this project, doe not limit their applicability only for the 

specific regions and specific variables. They are adaptable and can be used 

to model any other hydrologic variable also and in any other region in the 
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country (and elsewhere) to assess the impact of climate change on 

hydrology. 

2. The downscaling model developed based on the RVM is capable of 

producing a satisfactory value of goodness of fit in terms of R value and 

Nash-Sutcliffe coefficient. However, it is observed that the model is not 

able to reproduce the extreme streamflow observed in the record. Possibly 

this could be because regression based statistical downscaling models 

often cannot explain entire variance of the downscaled variable. 

3. The GCM CCSRINIES with B2 scenario projects a decreasing trend in 

future monsoon streamflow of Mahanadi, under climate change. This 

observation is consistent with an earlier study reported by Rao (1995). 

Such a decrease in streamflow may cause a critical situation for Hirakud 

dam in meeting the future irrigation and power demand. 

4. The streamflow in Malaprabha river is projected to increase on an annual 

scale during 2021-2100 for AlB, A2, and Bl scenarios, and during 2061-, 
2100 for COMMIT scenario by the SWAT model. In the case of SBEM 

model, the streamflow is projected to increase during 2041-2100 for AlB 

scenario, and during 2061-2100 for A2 and Bl scenarios. In the case of 

DDSM model, the streamflow is projected to increase during 2061-2100 

for A2 scenario, and during 2081-2100 for AlB scenario and no trend was 

discerned with B 1 and COMMIT scenarios. Thus, with all the models and 

most scenarios considered, the streamflow is projected to increase in 

Malaprabha river, although the extent of increase differs from projections 

of one model to another. 

5. A large number of uncertainties exist m climate change impact 

assessments. These uncertainties stem from various GCMs available and 

V future plausible climate scenarios used. The downscaling relationships 

themselves introduce another source of uncertainty. To address such 

uncertainties, results are provided through possible changes in the 

probability distributions of the meteorological drought and the streamflow. 
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6. The results indicate an increasing trend in the probability of severe and 

extreme drought for Orissa meteorological subdivision with a decrease in 

the probability of near normal condition. It may be concluded from the 

results that the region will be more drought prone due to the effect of 

climate change. 

7. The results show that the CDF of Mahanadi streamflow downscaled from 

L one GCM is entirely different- from that of another and also that 

dissimilarity exists among two scenarios of any particular GCM although 

all scenarios project a reduction in monsoon flow. 

8. An increased dissimilarity between the GCMs with time, is observed in 

projecting Mahanadi streamflow. The amount of uncertainty in 2080s is 

higher than those of the other time slices. This may point to different 

climate sensitivity among the models due to ignorance about the 

underlying geophysical processes. Such ignorance is addressed here with 

possibility theory. 

9. For water resources management it is important to know the effectiveness 

of the GCMs in modeling climate change and which of the scenarios best 

represent the present situation under global warming. Possibilities are 

assigned to GCMs and scenarios based on their system performance 

measure in predicting the streamflow during years 1991-2005, when 

signals of climate forcing are visible. A decreasing trend in future 

monsoon streamflow is projected for the Mahandi even with a possibility 

weighted CDF. 

10. A limitation of the work presented here is that the methodologies do not 

consider the uncertainty due to the use of multiple downscaling models. 

Another limitation of the work is that the Third Assessment Report (TAR) 

data have been used in most models developed in the present study, 

except the ones used for Malaprabha streamflow, which use the recently 

released Assessment Report 4 (AR4) data. 
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Recommendations for Future Studies 

Starting with the methodologies and the results provided in this report, the following 

logical extensions are possible, and should be taken up: 

(a) Developing adaptive long term policies for reservoir operation with the probability 

distributions as input, to offset the impact of climate change. 

(b) Assessing impacts of climate change on irrigation water demands, with the 

methodologies of downscaling and uncertainties presented in the work. 

(c) Assessing impacts on river floods, by developing relationships between climate 

variables and historical floods and using such relationships with future projections 

from climate models, and 

(d) Reworking the Intensity-Duration-Frequency (IDF) relationships for major river 

basins in India under climate change scenarios. 
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Appendix 1. Support vector regression 

The basic concept of SV regression is discussed in the present section first with a linear 

model and then it is extended to a nonlinear model using Kernels. Given a training data 

{ ( xl> y 1 ), ..... , ( x1, y 1 ), X E 91n, Y E 9t} , the SV regression eqn is be given by (Smola, 1996) 

y=f(x)=(w,x)+b, wEX,bE9t (A.l) 

where, (-,-) denoted the dot product in X. The objective of SVM regression is to find the 

function f(x) with minimum value of loss function and at the same time is as flat as 

possible (Smola and Schoelkopf, 1998). Flatness mathematically denotes the smaller 

value of w and one way to ensure this is to minimize the norm, i.e. IHI2 
= ( w, w). Thus 

the model can be expressed as the following convex optimization problem. 

. . . ~llwlf +C(t:;: + t~.) 
Mmimize - , i:l 

Subject to Y, - (ll'.x) - h :::;; f: + .;, 
(w.x) + h- Y, ->; <:+ :;; 

.;, . :;; ~ 0 

(A.2) 

(A.3) 

(A.4) 

(A.5) 

where C is a pre-specified value which determines the tradeoff between the flatness of 

f(x) and the amount up to which deviations larger than c is tolerated ( c;j and c;j' ), which 

correspond to c -insensitive loss function as presented in Eq. (8.1.6). The optimization 

model presented in Eqs. (A.2)-(A.5) can be solved using Lagrange multipliers. A dual set 

of variables are introduced to construct the Lagrange function, which is given below: 

L = ~lllif + c(t .;; + t.;.) -t<'7i:;,+,1:.;;) 
I 

-2: 1:,(1: + ~.- .\', + (w.x) +h) 
·= 1 

I 

- 2: :x,'(<: + :;: + yj- (w.x) - h) 
,;( (A.6) 

where L is the Lagrangian and 77,, ry,', a, a,' are Lagrangian multipliers satisfying the 

positivity constraints: 
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(A.7) 

From the saddle point condition, the partial derivatives of L with respect to the primal 

variables ( w, b, ;, , ;, ') have to vanish for optimality: 

oL 1 

- = I )x; - o:;) = 0 
ob i= l (A.8) 

oL 1 

-= w- ~(o:;- rl)x; = 0 
QW ~ I 

i= l (A.9) 

(A.l 0) 

where ;,<·>,a,<'>, 17,<'> refer to ; , and ;,·; a, and a,'; 17;. and77,· respectively. 

Substituting Eqs. (A.8}-(A.10) in Eq. (A.6) the following dual optimization problem is 

formulated. 

Maximize 

subject to 

I 

L)a; - a~)= 0 
i= l 

a;, ex; E (0, C] 

Equation (A.9) can be re-written as 

I 

w = :L:) ex; - ex; )x; 
i= l 

and thus, from Eq (A.l): 

I 

f(x) = 2:)a;- ex;){x;,x) + b 
t= l 

(A.ll) 

(A.l2) 

(A.13) 

(A.l4) 

(A.15) 

This is called the Support Vector Expansion for linear model which is used in SV 

regression. b can be computed by using Karush Kuhn Tucker (KKT) condition (Smola 

and Schoelkopf, 1998). 
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For most of the hydrologic analysis linear regression is not appropriate and thus a 

nonlinear mapping using kernel K is used to map the data into a higher dimensional 

feature space, where, with the kernel, linear analysis is performed. Using the kernel, the 

regression equation (Eq. (A.15)) can be modified to (Eq. (8.1.5)) 

Appendix 2. Kernel functions 

Kernel functions are used in SVM for nonlinear mapping of the original data or input into 

a high dimensional feature space. Kernel function used in a SVM should follow 

Mercer' s theorem, according to which it can be written that: 

1 K(x,x')f(x)f(x')dxdx' ~ 0 \If E L2(X) 
X x X (A.16) 

Some of the valid kernel functions satisfying the above mentioned condition are given 

below. 

A. Linear kernel: The linear kernels are the simplest kernels used in SVM for linear 

regression. They can be given by 

Homogeneous kernel: 

K(x,x') = (x,x') (A.l7) 

Non-homogeneous kernel: 

K(x,x') = ((x,x') + 1) (A.18) 

The performance of SVM with linear kernel function, being similar to that of linear 

regression, is not capable of modeling complicated and nonlinear relationship between 

climatological variables and streamflow and therefore such kernels are not used in the 

present study. 

B. Gaussian Radial Basis Function: Radial Basis Functions (RBFs) have received 

significant attention, most commonly with Gaussian form, 

') ( llx- x'll
2

) K(x,x = cxp - 2a2 

(A.19) 

where cr is the width of Gaussian RBF kernel, giving an idea about the smoothness of the 

derived function. A large kernel width acts as a low-pass filter in frequency domain, 

attenuating higher order frequencies and thus resulting in a smooth function. 

Alternatively, RBF kernel with small kernel width retains most of the higher order 
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frequencies leading to an approximation of a complex function by learning machine 

(Smola and Schoelkopf, 1998). 

C. Laplacian or Exponential Radial Basis Function: Laplacian or Exponential RBF of the 

form, 

1 ( llx- x
1

11) K(x,x) = cxp - .2<J:! 

(A.20) 

produces a piecewise linear solution which can be attractive when discontinuities are 

acceptable. 

D. Heavy tailed or Sublinear Radial Basis Function: Heavy tailed RBFs or Sublinear 

RBFs are introduced by Chapelle et al. (1999) which sometimes outperform traditional 

Gaussian or RBFs. They can be given by: 

K(x,X) = cxp ( _llx ;::n"') 
(A.21) 

It is worth mentioning that a generalized RBF can be given by 

1 ( ll_xfl - x'a "h) K(x,x) = cxp -
2

<J2 

(A.22) 

and it will satisfY Mercer's condition if and only if 0::; b::; 2. The choice of a has no 

impact on Mercer's condition. 

Appendix 3: Algorithm for Density Estimation using Orthonormal series 

The algorithm for density estimation using orthonormal series involves the following 

steps: 

Determination of Support and Scaling of Data-set 

The methodology presented for estimation of pdf using orthonormal systems is valid 

when the bound of random variable is [0,1] . The random variable of interest may have 

different bounds (say, [a,b]) and thus need to be converted to a variable y having interval 

of [0,1] by scaling the data. The scaled variable y may be given by: 

y = (x-a)l(b-a) (A.23) 

Considering the minimum and maximum values from the data set as the two bounds 

( [a, b]) is not a realistic method as there is no guarantee that unobserved values will not 
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cross these bounds. Methodology for determination of support from a data set may be 

found in Efromovich (1999). According to that methodology, if x1 , x2 , .... , xn are ordered 

Observations ( X1 ~ X2 ~ .... ~ Xn ), then 

where, 

(A.24) 

(A.25) 

(A.26) 

s is a small positive integer assuming that the density is flat near the boundaries of its 

support. The default value of s is 1, which is considered in the present work. 

Estimation of Orthonormal Series with Coefficients 

The Functions involved in the orthonormal series can be obtained using Eq. (8.3.23-

8.3.24). The coefficients 8
1
,} = 0,1, ... presented in Eq. (8.3.22) can be given by Eq. 

(A.27), where f(y) is the pdf of the scaled random variable Y. 

e1 = [! (y )<I> 
1 
(y )dy (A.27) 

It follows that 8
1 

is the expected value of <1> 
1 
(y), (Eq. A.28), which in tum may be 

approximated from a finite sample of n observations (yJ' j = 1, n) as (Eq. A.29). 

(A.28) 

(A.29) 

In our case, where Y is the scaled SPI-12 with a bound [0,1], the y
1 

are the scaled 

values of SPI -12 simulated from each climate model. 

Estimation of Cutoff J 

Determination of an appropriate cut-off J (Eq. 8.3.22) is important in the method based 

on orthonormal series. The choice of J depends on the goodness of fit, which can be 

determined by Mean Integrated Square Error (MISE) using Parseval's inequality. 

Following Effromovich (1999) J can be computed as: 

argmin 
J = -

0 ~ J ~ Jn 

J 

L)2d
1
n-1 -e;) 

J•O 

(A.30) 
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where Jn = [C10 + Cnln(n)]. The default values of C10 and C11 are 4 and 0.5 

(Efromovich, 1999). 

Smoothing of Estimated pdf 

In many cases it is worthwhile to smooth the fourier coefficients by multiplying them 

with some constants that takes values between 0 and 1. After smoothing a modified pdf is 

given by: 

- J 
/ 1 (y) = Iw

1
B;<l>

1
(y), 0 ~ y ~ 1, 0 ~ w

1 
~ 1 (A.31) 

J=O 

The weights ( w
1

) used for smoothing fourier coefficients may be given by: 

w0 = 1; (A.32) 

(A.33) 

Here (1-d/(nB: ))+ =max(0,(1-dl(nB: ))) , i.e. the positive part of (1-d/(nB: )). Other 

than first J number of fourier coefficients, a density function also requires a relatively 

large number of coefficients for a fair visualization. Thus high frequency terms are 

added, which are shrunk by a hard threshold procedure. After adding these extra terms 

Eq. (A.31) is modified to: 

(A.34) 

where, C1M and Cr are parameters for hard threshold procedure that define the maximal 

number of elements included in the estimate of pdf. The default values are 6 and 4 

respectively (Efromovich, 1999). I is an indicator variable such that ItA) has the value 

of 1 if A is true, zero otherwise. A high frequency term is included only if the 

corresponding Fourier coefficient is extremely large and thus the procedure does not 

reduce the smoothness of the estimate. 

Modification for Area under pdf and Negative Values 

An improvement in the pdf, thus estimated is necessary when it takes negative values at 

some of the points/ regions. For such cases, the following algorithm is developed in the 

present study, which ensures that the properties of pdf are satisfied by the estimated pdf. 

1. If there exists negative values at some points, find the maximum negative value. 
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2. Add this to f J (y) to make the value of the function positive, everywhere. 

3. Check the area under the curve. If it is less than 1, find out c by numerical methods, 

such that 

[, (];(y) +c)dy = 1 (A.35) 

f J(y) is now modified by adding c, as obtained from Eq (A.37), to it. 

- -f J(y) = fJ(y)+c (A.36) 

4. If the area under the curve is greater than 1, find out c1 in a similar procedure: 

[, (fJ(y)-c1)dy = 1 (A.37) 

Subtracting c1 from f J (y) may lead to a negative value of pdf at some points which is 

not desirable. In such cases after the subtraction take only the positive part of f J (y). 

- -f j (y) = (fj (y)-cl)+ (A.38) 

- -where (/J (y)-cl)+ =max(O,(/J (y)-cl)). Check the area again and if it is not nearly 

equal to 1, go to step 3, else stop. 

The other way of making adjustment in the estimated pdf to make the area under the 

curve equal to 1, is the use of multiplicative factor. In either case, the result will come 

almost similar as this adjustment methodology is not much sensitive to the final pdf. 

Estimation of pdf for Unsealed Data-set 

The scaled data/observations are distributed according to a density fr (y), where 

yE[0,1]. 

The pdf thus obtained corresponds to the scaled data set y over the interval of [0, 1] . The 

estimate of fx(x) of orginal dataset x over interval [a,b] may be given by: 

(A.39) 
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