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i) To develop multi-model ensembles for studying the rainfall-runoff
transformation process.

ii) To analyse the performance of the developed multi-model ensembles.

iii) To determine the optimal size and optimal combination of models for the
ensemble modelling of the rainfall-runoff transformation process.

iv) To evaluate the reliability of the simulated outputs obtained through
multi-model ensembles.

Any changes in the objectives during the operation of the scheme.

Uncertainty assessment was performed rather than reliability

assessment of simulated outputs in the last objective.
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All data collected and used in the analysis with sources of data.
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Methodology actually followed. (observations, analysis, results and
inferences)
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& discussion

Conclusions/ Recommendations
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How do the conclusions/recommendations compare with current

thinking

Ensemble hydrological modelling is attempted for the first time in
India, aimed at improved simulation and prediction of river
discharges. Ensemble of hydrological models reduces uncertainty
and provides better results in terms of real valued scores as
compared to a single hydrological model. The application of
ensembles towards uncertainty reduction and findings are in sync

with the current trend in the hydrological modelling fraternity.
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Software generated, if any: Nil
Possibilities of any patents/copyrights. If so, then action taken in this
regard: No. The following publications, however, have emerged from
this study:
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(2015). Identification of the best multi-model combination for

simulating river discharge. Journal of Hydrology, 525, 313-325.

Conference
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“Improving accuracy in modeling river discharge using
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November, 2014, pp. 437-445.
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16.  Suggestions for further work

a. Multi-model ensembles may be developed based on water
balance.

b. Impact assessment of climate change may be attempted using
multi-model ensemble.

¢. Contribution to overall prediction uncertainty due to

hydrological models and climate models may be assessed.
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Annexure |

SPONSORED RESEARCH AND INDUSTRIAL CONSULTANCY
INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR

STATEMENT OF RECEIPTS AND PAYMENTS OF RESEARCH SCHEME/PROJECT FOR THE
PERIOD 01/04/2014 TO 31/03/2015

"Ensemble Modeling of Rainfall-Runoff transformation Process

NAME OF THE PROJECT
(ERT)"

SPONSORING AGENCY

DEPARTMENT

INVESTIGATOR-IN-CHARGE

Ministry of Water Resources

Agricultural & Food Engineering

Prof. Rajendra Singh

Amount in¥
Amount Amount Amount
BRCEAS Sanctioned Received Spent
By, Salary / Fellowship 672000 0 0
By, Travel Expenditure 155000 0 0
By, Infrastructure/Equipment 988000 0 0
By, Experimental charges 300000 0 0
Sub Total 2115000 0 0
By, Contingency @ 5 % 105750 0 27998
Total 105750 0 27998
By, Institute Overhead 423000 0 0
L I
GRAND TOTAL 2643750 0 27998
Closing Bal sond
g Balance a ate 7402

CERTIFIED THAT THE ABOVE MONEY HAVE BEEN UTILIZED FOR THE PURPOSE
FOR WHICH THE SAME WAS SANCTIONED

Principal Investigator

ovc?

Deputy Registrar (SRIC)







SPONSORED RESEARCH AND INDUSTRIAL CONSULTANCY
INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR

STATEMENT OF RECEIPTS AND PAYMENTS OF RESEARCH SCHEME/PROJECT FOR THE
PERIOD 01/04/2015 TO 31/03/2016

"Ensemble Modeling of Rainfall-Runoff transformation Process

NAME OF THE PROJECT
) (ERT)"
SPONSORING AGENCY Ministry of Water Resources
DEPARTMENT Agricultural & Food Engineering

INVESTIGATOR-IN-CHARGE Prof. Rajendra Singh

Amountin¥

Amount Amount Amount

REREFES Sanctioned Received Spent
By, Salary / Fellowship 672000 236000 4500
By, Travel Expenditure 155000 87675 0
By, Infrastructure/Equipment 988000 0 0
By, Experimental charges 300000 100000 17668
Sub Total 2115000 423675 22168
By, Contingency @ 5 % 105750 80000 6934
Total 105750 80000 6934
By, Institute Overhead 423000 0 0
GRAND TOTAL 2643750 503675 29102
Closing Balance as on date 467171

CERTIFIED THAT THE ABOVE MONEY HAVE BEEN UTILIZED FOR THE PURPOSE
FOR WHICH THE SAME WAS SANCTIONED

Principal Investigator

Deputy Registrar (SRIC)
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SPONSORED RESEARCH AND INDUSTRIAL CONSULTANCY
INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR

STATEMENT OF RECEIPTS AND PAYMENTS OF RESEARCH SCHEME/PROJECT FOR THE
PERIOD 01/04/2016 TO 31/12/2016

NAME OF THE PROJECT (g z;e)r'frb!e Modeling of Rainfall-Runoff transformation Process

SPONSORING AGENCY Ministry of Water Resources

DEPARTMENT Agricultural & Food Engineering

INVESTIGATOR-IN-CHARGE Prof. Rajendra Singh

Amountin¥
Amount Amount Amount
RECEIPTS
. Sanctioned Received Spent
By, Salary / Fellowship 672000 0 0
By, Travel Expenditure 155000 0 125028
By, Infrastructure/Equipment 988000 0 230233
By, Experimental charges 300000 0 179740
Sub Total 2115000 0 535001
By, Contingency @ 5 % 105750 0 24652
Total 105750 0 24652
By, Institute Overhead 423000 0 0
GRAND TOTAL - 2643750 0 559653
losing Bal dat
Closing Balance as on date .92482

CERTIFIED THAT THE ABOVE MONEY HAVE BEEN UTILIZED FOR THE PURPOSE
FOR WHICH THE SAME WAS SANCTIONED

Principal Investigator

Deputy Registrar (SRIC)







Annexure Il

Utilization Certificate for the financial years 2014-15
Title of the Project/Scheme: “Ensemble Modeling of Rainfall-Runoff transformation process

(ERT}"
Name of the Institution: Indian Institute of Technology, Kharagpur- 721 302
Principal Investigator: Prof. Rajendra Singh

Ministry of Water Resources letter reference sanctioning the project Head of account as given in the
original sanction letter: MoWR Administrative Approval No. 23/68/2012-R&D/427-437,
Dated: 06/03/2012.

Financial Year to which UC pertains: 2014-15
(Hereinafter referred to as the UC Financial Year)

Reference (MoWR letter and Amountin¥

date)
Amount brought forward from | 23/68/2012-R&D/218-230 20,596.00
the previous financial year Date: 10/02/2016
Amount received during the UC | N/A 0.00
financial year
Total amount that was | Nil 20,596.00
available  for  expenditure
during the UC financial year
Actual expenditure incurred | Nil 27,998.00
during the UC financial year
Balance amount available at | Nil (-) 7,402.00
the end of the UC financial year

Unspent balance is to be refunded-OR carried forward to the next financial year

Certified that:
1. The information given above is correct
2. The balance of Rs. NA remaining unutilized at the end of the year has been refunded to
MoWR vide DD No.......cccuuranene, Dated . sssessisasisiss drawn on (bank)..........covvnn

The negative balance of Rs. 7, 402.00 remaining unutilized at the end of the year is carried forward
for utilizatien/adjustment during the next year i.e. 2015-16.

/
I

nature of Principal Signature of Registrar/ Signature of Head
Investigator Accounts Officer of the Institute

Date: a4 ‘f{ | ‘} Date: Date: 0—9 Mo l:?_ :
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Utilization Certificate for the financial years 2015-16

Title of the Project/Scheme:

(ERT)"

Name of the Institution:
Principal Investigator:

“Ensemble Modeling of Rainfall-Runoff transformation process

Indian Institute of Technology, Kharagpur- 721 302
Prof. Rajendra Singh

Ministry of Water Resources letter reference sanctioning the project Head of account as given in the
original sanction letter: MoOWR Administrative Approval No. 23/68/2012-R&D/427-437,

Dated: 06/03/2012.

Financial Year to which UC pertains: 2015-16
(Hereinafter referred to as the UC Financial Year)

Reference (MoWR letter and Amount in¥
date)
Amount brought forward from | Nil (-) 7,402.00

the previous financial year

Amount received during the UC
financial year

23/68/2012-R&D/218-230
Date: 10/02/2016

5,03,675.00

Total amount that was | Nil 4,96,273.00
available for  expenditure

during the UC financial year

Actual expenditure incurred | Nil 29,102.00
during the UC financial year

Balance amount available at | Nil 4,67,171.00

the end of the UC financial year

Unspent balance is to be refunded-OR carried forward to the next financial year

Certified that:

1. The information given above is correct
2. The balance of Rs. 4, 67,171.00 remaining unutilized at the end of the year has been

refunded to MOWR vide DD NO....occvvvvvereernnn. Dated s

drawn on (bank).........cceceus

The balance of Rs. 4, 67,171.00 remaining unutilized at the end of the year is carried forward for
utilization during the next year i.e. 2016-17.

ignature of Principal
Investigator

Rl T

Signature of Registrar/

Accounts Officer
Date:

Signature of Head :
e 5

of the
Date:

Institu .
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Utilization Certificate for the financial years 2016-17 (till 31/12/2016 date of termination)
Title of the Project/Scheme: “Ensemble Modeling of Rainfall-Runoff transformation process

(ERT)”
Name of the Institution: Indian Institute of Technology, Kharagpur- 721 302
Principal Investigator: Prof. Rajendra Singh

Ministry of Water Resources letter reference sanctioning the project Head of account as given in the
original sanction letter: MoWR Administrative Approval No. 23/68/2012-R&D/427-437,
Dated: 06/03/2012.

Financial Year to which UC pertains: 2016-17
(Hereinafter referred to as the UC Financial Year)

Reference (MoWR letter and Amount in¥

date)
Amount brought forward from | Nil 4,67,171.00
the previous financial year
Amount received during the UC | Nil 0.00
financial year
Total amount that was | Nil 4,67,171.00
available for  expenditure
during the UC financial year
Actual expenditure incurred | Nil 5,59,653.00
during the UC financial year
Balance amount available at | Nil (-) 92, 482.00
the end of the UC financial year

Unspent balance is to be refunded-OR carried forward to the next financial year

Certified that:
1. The information given above is correct
2. The balance of Rs. Nil remaining unutilized at the end of the year has been refunded to
MoWR vide DD No.........coevinnnee Dated...msimssd drawn on (bank)..........cccueee

The negative balance of (-) 92, 482.00 remaining unutilized at the end of the year is carried
forward for utiization/adjustment during the nextyeas/next release of grants.

LY

/ %6 ’ 4
nature of Principal Signature of Registrar/ Signature of Head

Investigator Accounts Officer of the Institute

Date: "IH \ T\ "™ Date: | Date:







Annexure-I11

Statement of Equipment Purchased under the Scheme

Assets Acquired Wholly or Substantially out of Government grants Registrar

maintained by grantee institution

Name of Sanctioning Authority: Ministry of Water Resources, Govt. of India

Serial No

Name of Grantee Institution

Indian Institute of Technology, Kharagpur

No. and date of sanction

MoWR Administrative Approval No. 23/
68/2012-R&D/427-437 dated 06 March, 2012

Amount of the Sanctioned grant

Rs. 3,38,000

Brief purpose of the grant

To procure Intel Processor Based Server, Laptop
(Notebook), and MIKE SHE Software Upgrade

Whether any condition regarding the right of
ownership of Government in the property or
other assets acquired out of the grant was
incorporated in the grant-in-aid sanction.

As per administrative approval,

Particulars of assets actually credited or
acquired

(i) Laptop
(i) MIKE SHE software Upgrade

(iii) Server

Value of the Assets as on (Date)

INR 4,25,300

Purpose for which utilised at Present

The Server and the laptop are being used to
carry out rainfall-runoff simulations. Laptop is
also being used while collecting data from
different agencies. The MIKE SHE software is
being used for hydrological modelling of the
selected catchments.

Encumbered or not

No

| Reasons if encumbered

Not Applicable

Disposed of or not

No

Reasons and authority, if any, for disposal

Not Applicable

Amount realised on disposal

Not Applicable

Remarks

The equipment are being fully utilised
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Annexure -1V

Data collected and used in the analysis along with source of data

Data Sources
Digital Elevation Model SRTM, CARTOSAT-1
Landuse Landsat ETM+, RESOURCESAT-2 (LISS —III)
Rainfall IMD, Hydrometery Bhubaneswar
Maximum temperature IMD, Hydrometery Bhubaneswar
Minimum temperature IMD, Hydrometery Bhubaneswar
River discharge CWC Bhubaneswar
Soil map National Bureau of Soil Survey and Land Use Planning
(NBSS & LUP), Kolkata
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Annexure -V

Study Area, Methodology, Results & Discussion

This section includes a brief description of the study area, different hydrological
models and ensemble methods along with theoretical background for model
/ensemble evaluation. Methodology behind uncertainty analysis is also discussed in
this section. Furthermore, results are presented in latter part followed by associated
discussion.

1  Study Area

Two catchments of the middle reaches of Mahanadi River Basin namely, Kesinga and
Salebhata, located in Odisha, India, and having concurrent rainfall-runoff data are
chosen as the study area (Fig. 1). Kesinga lies between 19°16°10™ and 20°44°42” N
latitudes, and 82°02°50” and 83°24°09”E longitudes, and covers an area of 12371 ‘
km’, whereas, Salebhata lies between 20°40°12” and 21°25°08” N latitudes, and
82°33’24” and 83°34°11” E longitudes, and covers an area of 4515 km?. The main
river of the study area is Mahanadi which has a drainage area of 141589 km?’
including 75136 km’, 65580 km®, 635 km” and 238 km’ in Chattisgarh, Odisha,
Mabharastra and Jharkhand states of India, respectively. The total length of the river
from origin to its outfall into Bay of Bengal is 851 km, of which 357 km lies in
Chbhattisgarh and 494 km in Odisha. The middle reaches of the Mahanadi river
extends from Hirakud dam to Munduli weir having a total length of 358.37 km. The
rivers joining the main Mahanadi River are Ong, Bagh, Suktel and Tel. Tel river
originates in and passes through Kesinga, whereas Ong river originates in and passes
through Salebhata. About 50% of the area of middle reaches of the basin is hilly
varying in elevation from 300 m to 1321 m above mean sea level, and remaining area
lies between 0 m and 300 m on either side of the Mahanadi River. The red and yellow
soils cover a major part of the area. Paddy is the main crop grown on the cultivable
land. The average annual rainfall of the basin is 1360 mm. The Normal rainfall season
is of five months, i.e., from June to October, though the maximum precipitation is
usually observed during July — Mid-September (CWC, 1997). The coldest and hottest
months in the basin are December and May, respectively. The entire basin area is
divided into smaller catchments as per the location of the discharge gauging sites.
However, due to data availability constraints, only two catchments, i.e., Kesinga and

Salebhata, are chosen for this study.
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Fig. 1: Location of the study area

2 Theory and Methodology

2.1 Hydrological Models

As the primary objective of the study is to test the efficacy of the concept of
combining various rainfall-runoff model outputs, the readily available models were
used. This selection of models is neither considered to be optimum nor even
considered to be entirely representative of the range of models present in the
literature. However, based on data availability, model requirements and expertise,
eight hydrological models. varying from lumped conceptual to distributed physically
based were chosen in this study. The models include two distributed physically based
models, i.e., MIKE SHE (Abbott et. al. 1986a, 1986b; Refsgaard and Storm, 1995)
and SWAT (Arnold et al., 1998), and six lumped conceptual models, i.e., HEC-HMS
(Feldman, 2000; USACE, 2000), TANK (Sugawara, 1979), AWBM (Boughton,
2004), SIMHYD (Chiew et al., 2002), SACRAMENTO (Burnash et al., 1973) and
SMAR (O’Connell et al., 1970). The chosen models represent a broad cross-section of
complexity ranging from fully distributed, physically-based models to lumped.
conceptual models in terms of their spatial resolution and number of model

parameters. Process parameterization of these models is different; hence they behave
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differently, which is a necessary criterion for ensemble creation. A brief description of

these models is given in the following sub-sections.
2.1.1 MIKE SHE

MIKE SHE is a comprehensive deterministic, distributed and physically based
modelling system, capable of describing the entire land phase of the hydrological
cycle in a given watershed (Abbott et al., 19864, b; Refsgaard and Stor_m, 1995). The
model area is discretized by two analogous horizontal-grid square networks for
surface and groundwater flow components. These are linked by vertical column of
nodes at each grid representing the unsaturated zone. MIKE SHE modelling system is
designed with a modular structure. Its core module is MIKE SHE Water Movement
Module (MIKE SHE WM). Other MIKE SHE modules are built around this core
module. Each component solves a corresponding equation as follows: 3-D Boussinesq
Equation for saturated groundwater flow, 1-D Richards’ Equation for unsaturated
flow, 2-D diffusive wave approximation of the Saint Venant equations for overland
flow, and 1-D diffusive wave approximation of the Saint Venant equations for river
flow. MIKE SHE uses the Kristensen and Jensen (1975) method for calculating actual
evapotranspiration based on potential evaporation, leaf area index. root depth for each
vegetation type, and a set of empirical parameters. Fig. 2 presents the schematic

diagram of MIKE SHE model structure.
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Fig. 2: Schematic diagram of MIKE SHE model (DHI, 2007)

2.1.2 SWAT

Soil and Water Assessment Tool (SWAT) (Arnold et al., 1998) is a physically based,
continuous simulation watershed model which is capable of simulating surface runoff,
sediment yield and nutrient losses from small, medium and large watersheds. The
‘physical processes associated with water and sediment movement, crop growth, and
nutrient cycling are directly modeled by SWAT using input data. The model simulates
the hydrological cycle based on the water balance equation using precipitation,
surface runoff, evapotranspiration, infiltration and return flow. The model uses SCS
‘curve number technique and Green-Ampt model to compute surface runoff volume
and infiltration, respectively. Potential evaporation may be computed using
Hargreaves, Preistley-Taylor or Penman-Monteith methods. For return flow
estimation, SWAT partitions groundwater into two aquifer systems — a shallow,

unconfined aquifer which contributes return flow to streams within the watershed and

.




a deep, confined aquifer which contributes return flow to streams outside the

watershed.
2.1.3 HEC-HMS

Hydrologic Modelling System (HEC-HMS) (Feldman, 2000; USACE, 2000) was
designed to simulate the precipitation-runoff processes of dendritic watershed
systems, which is applicable in a wide range of geographic areas for solving the
widest possible range of problems. The physical representation of a watershed is
accomplished with a basin model in which hydrologic elements such as subbasin,
reach, junction, reservoir, diversion, source, and sink are connected in a dendritic
network to simulate runoff processes. Various methods are available to simulate
infiltration losses and to transform excess precipitation into surface runoff, and for
representing base flow contributions to sub-basin outflow. A variety of hydrologic
routing methods such as Muskingum method, straddle stagger method, the modified
Puls methods etc. are available to model a reach. Channels with trapezoidal,
rectangular, triangular, or circular cross sections can be modeled with the kinematic
wave or Muskingum-Cunge method. Channels with overbank areas can be modeled

with the Muskingum-Cunge method using 8-point cross section.
2.1.4 TANK

TANK model (Sugawara, 1979) is composed of four tanks laid vertically in series.
Precipitation is put into the top tank, and evaporation is subtracted sequentially from
the top tank downwards. As each tank is emptied the evaporation shortfall is taken
from the next tank down until all tanks are empty. The outputs from the side outlets
are the calculated runoffs. The output from the top tank is considered as surface
runoff, output from the second tank as intermediate runoff, from the third tank as sub-
base runoff and output from the fourth tank as base flow. Despite this simple
schematisation, the assessment of the tank model is not so simple. The assessment of
the model is strongly influenced by the content of each of the stores. Under the same
rainfall and different storage volumes the runoff generated is significantly different.
The tank model is applied to analyse daily discharge from daily precipitation and

evaporation inputs. The concept of initial loss of precipitation is not necessary,

=16



because its effect is included in the non-linear structure of the tank model. Fig. 3

presents the schematic diagram of TANK model structure.
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Fig. 3: Structure of TANK rainfall-runoff model (Clanor et al., 2015)

2.1.5 AWBM

AWBM (Boughton, 2004) is a catchment water balance model that relates runoff to
rainfall with daily or hourly data, and calculates losses from rainfall for flood
hydrograph modelling. The model uses three surface stores to simulate partial areas of
runoff. The water balance of each surface store is calculated independently of the
others. At each time step, rainfall is added to each of the three surface moisture stores
and evapotranspiration is subtracted from each store. If the value of moisture in the
store becomes negative, it is reset to zero, as the evapotranspiration demand is
‘superior to the available moisture. If the value of moisture in the store exceeds the
capacity of the store, the moisture in excess of the capacity becomes runoff and the

store is reset to the capacity. When runotf occurs from any store, part of the runoff
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becomes recharge of the base flow store and the remainder goes as surface runoff.
The surface runoff can be routed through a store, if required, to simulate the delay of
surface runoff reaching the outlet of a medium to large catchment. Fig. 4 presents the

schematic diagram of AWBM model structure.

P
l £ 1 Excess Surface runoff = (1-BFI)*Excess
| -
rn I ~1:
| | N B
ice | 2 B
L4 1 : = v
i i x
iC2 i 'S =
| ; o
- ic3
Baseflow recharge
= BFI*Excess
A1l A2 A3 Routed surface runoff
< e S > =(1-K8)*8
s
]
| BS —
Parameters and State Variables: Y
Baseflow
C1-C3 = surface storage capacities =(1-K)*BS
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K = daily baseflow recession constant v
BS = current volume in baseflow store
KS = daily surface flow recession constant Total runoff
Ss = current volume in surface routing recession store oterun

Fig. 4: Structure of AWBM rainfall-runoff model (Clanor et al., 2015)

2.1.6 SIMHYD

SIMHYD (Chiew et al., 2002) is a daily conceptual rainfall-runoff model that
estimates daily streamflow from daily rainfall and areal evapotranspiration data. In
SIMHYD, daily rainfall first fills the interception store, which is emptied by
evaporation. The excess rainfall is then subjected to an infiltration function that
determines the infiltration capacity. The excess rainfall that exceeds the infiltration
capacity becomes infiltration excess runoff. Moisture that infiltrates is subjected to a
soil moisture function that diverts the water to the stream (interflow), groundwater
store (recharge) and soil moisture store. The equation used to simulate interflow,
therefore, attempts to mimic both the interflow and saturation excess runoff processes
(with the soil wetness used to reflect parts of the catchment that are saturated from

which saturation excess runoff can occur). Groundwater recharge is then estimated as
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a linear function of the soil wetness. The remaining moisture flows into the soil

moisture store. Evapotranspiration from the soil moisture store is estimated as a linear
function of the soil wetness, but cannot exceed the atmospherically controlled rate of
areal potential evapotranspiration. The soil moisture store has a finite capacity and
overflows into the groundwater store. Base flow from the groundwater store is
simulated as a linear recession from the store. Finally, model estimates runoff
generated as the sum of three sources, i.e., infiltration excess runoff, interflow (and
saturation excess runoff) and base flow. Fig. 5 presents the schematic diagram of

SIMHYD meodel structure.
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Fig. 5: Structure of SIMHYD rainfall-runoff model (Clanor et al., 2015)

2.1.7 SACRAMENTO

SACRAMENTO (Burnash et al., 1973) model is a continuous rainfall-runoff model
used to generate daily streamflow from rainfall and evaporation records. The Model
uses soil moisture accounting to simulate the water balance within the catchment. Soil
moisture storage is increased by rainfall and reduced by evaporation and by flow of
water out of the storage. There are five stores in the SACRAMENTO Model: Upper
zone tension water, Upper zone free water, Lower zone tension water, Lower zone

primary free water and Lower zone supplementary free water. The tension water
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stores represent the volume of water that is held in the soil matrix by surface tension.
Water can only be removed from tension stores by evapotranspiration. In the free
water stores, water can move through the soil vertically to other stores, or laterally as
interflow (upper zone) or as baseflow (lower zone). Stream flow generated with this
model is made up of three flow components: surface runoff, interflow and base flow.
The generation of these components depends on the amount of water in each store
relative to the stores capacity, and the rate at which water moves into and out of these

stores. Fig. 6 presents the schematic diagram of SACRAMENTO model structure.
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Fig. 6: Structure of SACRAMENTO rainfall-runoff model (Clanor et al., 2015)
2.1.8 SMAR

Soil Moisture and Accounting M’ odel (SMAR) (O’Connell et al., 1970) is a lumped
conceptual rainfall runoff water balance model with soil moisture as a central theme.
The model consists of two components in sequence, a water balance component and a
routing component. The model simulates stream flow at the catchment outlet by using
time series of rainfall and pan evaporation. The water balance component divides the
soil column into horizontal layers, which contain a prescribed amount of water

(usually 25 mm) at their field capacities. Evaporation from soil layers is treated in a
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way that reduces the soil moisture storage in an exponential manner from a given
potential evapotranspiration demand. The routing component transforms the surface
.runoff generated from the water balance component to the catchment outlet by a
gamma function model form (Nash, 1960), a parametric solution of the differential
routing equation in a single input single output system. The generated groundwater
runoff is routed through a single linear reservoir and provides the groundwater
contribution to the stream at the catchment outlet. The surface runoff generated from
the landscape is routed (attenuation and lag) to the catchment outlet using the linear
cascade model of Nash (1960). Fig. 7 presents the schematic diagram of SMAR
model structure.

Rainfall

' evapotranspiration

l 7 @ caononoe

WLexcess rainfall
irect Runoff
@ Direct Runof ]
é Rainfall in Excess of Infiltration Capacity
f ‘L Moisture in Excess of Infiltration Capacity
Layer 1
(25 mm)
/\ hydragraph
Layer 2
(25 mm)
Groundwater
linear reservoir
LayerlL
(25 mm)
groundwater level
= Runoff

Total depth Z mm

Fig. 7: Structure of SMAR rainfall-runoff model (Clanor et al., 2015)

2.2 Model Setup and Ensemble Preparation

2.2.1 Data Collection

Boundary and topography maps of the study catchments were derived from Shuttle
RADAR Topography Mission (SRTM) image of 90 m resolution which was
downloaded from Consultative Group on International Agricultural Research-

Consortium for Spatial Information (CGIAR-CSI) website. Land use/land cover map

e




was derived from LANDSAT -7 (ETM+) images, downloaded from Global Land
Cover Facility (GLCF) website. Soil map was collected from the National Bureau of
Soil Survey and Land Use Planning (NBSS & LUP), Kolkata and corresponding soil
properties were estimated using Rosetta 1.0 software (Marcel et al., 2001), Daily
rainfall and temperature data of eight and six meteorological stations, respectively,
for Kesinga and Salebhata, were collected from India Meteorological Department
(IMD). Bhubaneswar for the period 2004 to 2009. Figs. 8 and 9 present the rainfall
station data of Kesinga and Salebhata, respectively. Thiessen polygon method was
used to obtain the average daily rainfall of the catchment. Figs. 10 & 11 present the

location of raingauge stations and Thiessen polygons for Kesinga and Salebhata,

respectively.
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The average annual rainfall over the catchments is found to be 1475 mm and 1284
mm for Kesinga and Salebhata, respectively. The discharge data at the outlet of the |

catchments was obtained from Central Water Commission (CWC), Bhubaneswar for
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the period 2004 to 2009. Figs. 12 and 13 present the average rainfall of Kesinga and
Salebhata, respectively, along with observed discharge at the outlet of the respective
catchments. The average daily discharge at the outlet of the catchments is found to be
313 m’/s and 72 m"/s for Kesinga and Salebhata, respectively. The entire dataset was
split into two parts: June 2004-May 2007, which was used for calibration, and June
2007- May 2009, which was used for validation of different hydrological models.
Mean and standard deviation of discharge at the outlet of Kesinga are found to be 303
and 909 m’/s, respectively during the calibration period, and 358 and 1069 m’/s,
during the validation period. Similarly, mean and standard deviation of daily
discharge at the outlet of Salebhata are found to be 72 and 275 m’/s, respectively.
during the calibration period, and 59 and 220 m%s, during the validation period. The
difference in average of observed discharges, during calibration and validation
periods, is analyzed using Student’s t-test and found to be statistically insignificant at
95% level of significance. The pre- and post-monsoon groundwater table depths at 32
and 34 different locations in Kesinga and Salebhata, respectively, were collected from
hydrometry division, Bhubaneswar. Reference evapotranspiration was determined by

the Hargreaves equation using DSS_ET software (Bandyopadhyay et al., 2012).
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2.2.2 Model Setup, Calibration and Validation

Model setup was developed for all eight models using the collected data followed by
their calibration for the period of 1/6/2004 to 31/5/2007. Manual calibration was
performed by trial and error method of parameter adjustments. Several simulations
were performed for getting a calibrated model. After each adjustment of parameters,
the simulated and the observed results were compared to find out the improvement in
predictions. The performance of the model for simulating surface runoff was
evaluated using Nash Sutcliffe efficiency (NSE) and percent bias (PBIAS) as
performance index as per Eq. 1 and 2. All the calibrated models were validated for the

period of 1/6/2007 to 31/5/2009 by keeping the parameters of model unaltered.
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i . th : 1
where, (. = simulated discharge on i" day. O, ; = observed discharge on i day,

obs,i

Q.,,= average simulated discharge, O, = average observed discharge, and » = total

number of days under consideration.

2.2.3 Multi-Model Ensemble Methods

There are several methods available for developing multi-model ensembles. Here, we
have compared the performance of eight methods for creating the multi-model
ensembles and for selecting the most suitable method for the study area. The selected
methods include simple methods like mean, median and trimmed mean and more
complex methods like weighted mean based on calibration performance (two
variants), linear programming, simple model average and multi-model super

ensemble. A brief description of these methods is given in the following sub-sections.

2.2.3.1 Mean

The mean is the simplest method of combining the outputs of different individual
models. Given the estimated discharges of M rainfall-runoff models, a combined

estimate of the discharge, O, at the i” time period, using mean, is given by

M

: Q\l.‘)i.l,,‘

/=l
Qo.’”.\..‘ IM ( )

where, Q.= ensemble discharge at i™ time step, QOsim r/=simulated discharge by the

7" model at i time step.

In this method, equal emphasis (i.e. weight) is assigned to the outputs of all the
considered models. The average can produce forecasts that are better than that of the
individual models and its accuracy depends mainly on the number of models
involved, and on the actual forecasting ability of the specific models included in the

simple average (Makridakis and Winkler, 1983; Vel azquez et al., 2011).

2.2.3.2 Median

The method estimates the median of discharges simulated by different models at

different time steps (Viney et al., 2009) and is given by

S,



Q.= }l/fedi(m'-(Q\,,,,_M ) (4)

=ens,!

2.2.3.3 Trimmed Mean

Ensemble using this method is estimated by excluding the result of two extreme
models and taking the average of remaining models at every time step (Viney et al.,

2009).

2.2.3.4 Weighted Mean Method (WAM_K=1, WAM_K=1.5)

Ensemble discharge using this method is calculated as:
e = A (3)
where, P= simulated discharge matrix, and A= weight matrix of the member models.

The weights of different models are estimated using Nash Sutcliffe efficiency of

member models during the calibration period as (Viney et al., 2009):

i
N (1-NSE '
a(j.k)=— -

1
2. (1- NSE_ Y

x=l

(6)

where, NSE, = Nash Sutcliffe efficiency of x" model during calibration , NSE; = Nash
Sutcliffe efficiency of /" model during calibration, a(j.k)= weight of /" model and k= a
positive exponent which provides higher weight to the model having higher efficiency

in the ensemble model.
Two variants of this method exist in literature, with k=1 and k&=1.5.

NSE is given by:

i (.an:\_i - Q.,,,,_,):

NSE =1-+£ — 7
Z (Quh\_} - Q”ﬁr )2
=1

NSE ranges between —oo and 1, and it is often considered that the NSE higher than 0.5

characterizes a good simulation of the discharges (Moriasi et al., 2007).




2.2.3.5 Linear Programming (LP)
Ensemble discharge using this method is also calculated from Eq. 3.
For obtaining the weight matrix of the member models, sum of deviations between the

simulated ensemble discharge and observed discharge is minimized. This is expressed

mathematically as:

Minimize: Z =Y U, +V, (8)
=1
M
SUb.]eCt to Z Q.wm_;,_,’H/,l ¥ Lv" + L: = Qm‘l\,r (9)
j=1 for i=1 to n.
M
W =1 (10)

= 3 B ; 1 : : 5 4% i
where, U; = negative deviation variable on i day of simulation, V= positive deviation

variable on ;"' day of simulation, and W,= weight of /" model.

2.2.3.6 Simple Model Average (SMA)

This method uses the logic of bias reduction with respect to a member model
(Georgakakos et al., 2004), and is considered as the benchmark in development of
sophisticated methods of multi-model ensemble. The ensemble discharge is estimated

as:

_ w0, -0 )]
e sim.i.j sim. j
Qens.i T obs T Z f M I (11)
J=1

where, O

N

m.; —average simulated discharge byj”’ model.

2.2.3.7 Multi-Model Super Ensemble (MMSE)

This method uses the logic of bias reduction with respect to individual member
models along with variance reduction in simulation/prediction (Krishnamurti et al..

2000). The ensemble discharge is estimated as:

IR I 5 | RS (12)




where, a;= the weight of /" model in the weight matrix A. The weight matrix is

estimated by unconstrained least square technique, which is estimated as:
A=(P'P)Y'P'Q (13)
where, O= observed discharge matrix and P" = transpose of matrix P.

2.2.4 Evaluation of Multi-Model Ensemble Methods

Ensembles of the eight models were created using eight different ensemble methods
and their performance was evaluated to identify the most suitable method for the
selected catchment. For this purpose, RMSE and R, two commonly used statistical
criteria in the field of hydrology, were used (Georgakakos et al., 2004; Ajami et al..
2006). The lower the RMSE and higher the R, better is the performance of the

ensemble with respect to these scalar criteria. RMSE is defined as follows:

1 & =
RMSE = J_ Z (.Q.\mu - Quh\- )'~ ( 14)
n 1=1

2.3 Ensemble Selection

2.3.1 Development of Multi-Model Ensembles

Selected models belong to two classes: lumped conceptual and distributed physically
based. Hence, at least one model from each class was considered while developing the
multi-model ensembles. Table 1 presents 189 different possible combinations of the
selected models. In this table, different models, viz., MIKE SHE, SWAT, HEC-HMS,
TANK. AWBM, SIMHYD, SACREMANTO and SMAR are denoted by numbers 1.
2, 3. 4,5, 6,7 and 8, respectively. The combination of models is denoted by
concatenation of their corresponding numbers in the last column of Table 1. For
example. combination ‘124" denotes the combination of models *1°, “2°, and *4°, i.e.,

MIKE SHE, SWAT and TANK.




Table 1: Possible ensembles with model combinations

*

Ensemble No. of No. of Model combitintion
size physically  conceptual
based model
model

2 1 | 13, 14, 15, 16, 17, 18, 23, 24, 25, 26, 27, 28
134, 135, 136, 137, 138, 145, 146, 147, 148, 156,

3 I 2 157, 158, 167, 168, 178, 234, 235, 236, 237, 238,
245, 246, 247, 248, 256, 257, 258, 267, 268, 278

3 2 1 123, 124, 125, 126, 127, 128
1345, 1346, 1347, 1348, 1356, 1357, 1358, 1367,
1368, 1378, 1456, 1457, 1458, 1467, 1468, 1478,

4 1 3 1567, 1568, 1578, 1678, 2345, 2346, 2347, 2348,
2356, 2357, 2358, 2367, 2368, 2378, 2456, 2457,
2458, 2467, 2468, 2478, 2567, 2568, 2578, 2678

4 - ) 1234, 1235, 1236, 1237, 1238, 1245, 1246, 1247,
1248, 1256, 1257, 1258, 1267, 1268, 1278
13456, 13457, 13458, 13467, 13468, 13478, 13567,
13568, 13578, 13678, 14567, 14568, 14578, 14678,

5 | 4 15678, 23456, 23457, 23458, 23467, 23468, 23478,
23567, 23568, 23578, 23678, 24567, 24568, 24578,
24678, 25678
12345, 12346, 12347, 12348, 12356, 12357, 12358,

5 2 3 12367, 12368, 12378, 12456, 12457, 12458, 12467,
12468, 12478, 12567, 12568, 12578, 12678

6 I 5 134567, 134568, 134578, 134678, 135678, 145678,
234567, 234568, 234578, 234678, 235678, 245678
123456, 123457, 123458, 123467, 123468, 123478,

6 2 4 123567, 123568, 123578, 123678, 124567, 124568,
124578, 124678, 125678

7 | 6 1345678, 2345678

7 5 5 1234567, 1234568, 1234578, 1234678, 1235678,
1245678

8 2 6 12345678

MIKE SHE, SWAT, HEC-HMS, TANK, AWBM, SIMHYD, SACREMANTO and

SMAR are denoted by numbers 1, 2, 3, 4, 5, 6, 7 and 8, respectively.

2.3.2 Contingency Table

Contingency table is a complete representation of joint probability distribution of

simulated and observed discharges. This table can be constructed by grouping the

simulations and observations of the event in N bins in ascending order. However, ten

equi-probable bins of probability interval 0.1 are usually taken in practice (Hamill,

1997; Sahai et al., 2008). The lower probability limit for first bin is zero, while the

upper limit for the last bin is one. The threshold discharge for each bin is calculated
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by frequency analysis of the observed discharge using the Weibull plotting position

method. The probability of an event Q not exceeding a given threshold (; is given by

X
X +1

<0 1=1- (15)
where, O, = threshold discharge or maximum discharge limit for different bins, x=

rank of ), in considered discharge, and X = total number of observations considered

for the frequency analysis.

Hit rate (HR), representing the proportion of the simulated as well as observed events,
and false alarm rate (FAR), representing the proportion of simulated but not observed
events, are calculated for each probability bin. Computation of HR and FAR includes
the summation of observed occurrences (0), i.e.. number of observed values
(discharge) which is simulated by the model, and non-occurrences (NO), i.e., number
of observed values (discharge) which is not simulated by the model for each

probability bin. The HR and FAR for K" bin is defined as:

>0

HR, = &£ (16)

FAR, =2 (17)

where, N = total number of bins, usually taken as ten.

2.3.3 Categorical Evaluation of Ensembles

The relative operating characteristic (ROC) curve is a representation of skill of a
prediction/simulation system in which the hit rate and the false-alarm rate are
compared. The ROC curve was first introduced into the meteorological literature by
Mason (Mason, 1982), although it has a longer history of use in disciplines of
psychology and medicine. Multi categories contingency table is constructed for a set

of simulated values that can range from 0%, representing less than the lowest possible




discharge, to 100%, indicating higher than the highest possible discharge. A point in
the ROC curve is defined by the FAR on the x-axis and HR on the y-axis. Fig. 14
presents a typical ROC curve. The ROC curve of a perfect ensemble connects O(0,0),
A(0,1) and B(1,1), and that of a no-skill ensemble connects O(0,0) and B(1,1) along
diagonal (Wilks, 1995). The upper left corner of the ROC-diagram represents a
perfect forecast system where there are no false alarms and only hits (HR=1 and
FAR=0). There are number of indices for summarizing the performance of a
simulation/forecast (Mason, 1982). However, the area under the ROC curve is the
most commonly used index. ROC area corresponding to more skillful
simulation/forecast is higher compared to less skillful simulation/forecast. The area
under the ROC curve of all the ensembles are computed numerically using trapezoidal
rule. The ROC area corresponding to a perfect system is one (joining points O, A and
B) whereas, that of no skill system is less than 0.5 (below the diagonal). The details of
ROC curve, and its construction and interpretation, may be referred from Wilks

(1995).

0 - T T T T =1

0 0 0.2 0.4 0.6 0.8 I
FAR

Fig. 14: Relative Operating Characteristic (ROC) curve of a typical ensemble

2.3.4 Temporal Evaluation of Ensemble

Two of the most basic quantities used to verify an ensemble system are ensemble
dispersion, or spread, and ensemble skill of the control. Large ensemble spread
corresponds to relatively uncatchable situation whereas small spread corresponds to
relatively highly catchable situation. Spread is defined as the distance function of "
order between ensemble and simulated quantities, whereas skill is defined as the

distance function of n” order between ensemble and observed quantity (Buizza and
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Palmer, 1998). Some of the studies related to atmospheric sciences reveal that

nd

distance function of 2™ order may be used to define ensemble spread and skill
(Barker, 1991). Hence, daily skill can be defined as the root mean square distance
(RMSD) between daily discharge simulated by ensemble and observed daily
discharge, i.e., the absolute difference between daily discharge simulated by ensemble
and observed daily discharge, whereas spread as the RMSD between daily discharge
simulated by ensemble and the discharge simulated by different models (Barker.
1991). Spread—skill relationships can be characterized by number of cases, in which
ensemble skill is less than spread, i.e., ensemble is providing advantage over spread
(Buizza and Palmer, 1998). We call this number of cases as number of skillful days
(N due to consideration of daily time step in this study. This index of spread-skill

relationship is used as temporal evaluation criteria for ensembles.

2.3.5 Selection of the Best Ensemble

Developed ensembles may be evaluated using scatter plot of ROC area and Ny for
combined categorical and temporal evaluation. The upper right corner of scatter plot
corresponds to both maximum number of skillful days and maximum ROC area.
Hence, the upper right ensemble in scatter plot is the best performing ensemble from
both categorical and temporal evaluation point of view. However, the best ensemble
must perform consistently better for the validation period as well. Hence, the
ensemble whose performance is good in both calibration and validation periods may
be considered as good ensemble. This is not possible using scatter plot only. Hence,
an analytical procedure is developed in which both the number of skillful days and
ROC area is normalized separately for all ensembles such that both become unitless.

ROC area and N, are normalized as follows:

ROC-ROC,,
R OC.’\"(JJ'm = mean ( l 8)
ROCy,
N,-N,
Ny o = _fN_f o

d . SD

where, ROC yorm= normalized ROC area of individual ensemble, ROC= original ROC
area of individual ensemble, ROC,..,= mean ROC area of all ensembles,

ROCsp=standard deviation of ROC area of all ensembles, Ny y,.»= normalized N; of
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individual ensemble, N~ original N, of individual ensemble, N eq,= mean Ny of all

ensembles and N, sp=standard deviation of N, of all ensembles.

In order to identify the ensemble, which performs better in both the calibration and
validation periods, a SCORE (S) is introduced as the sum of normalized ROC area and
normalized number of skillful days. This SCORE is an indicator of distance from
origin to the ensemble in scatter plot. An ensemble is supposed to perform the best if
it follows two criteria: SCORE has to be higher, and ‘location’ has to be in the upper
right corner on scatter plot. The developed ensembles were ranked according to their
performance using developed score for both calibration and validation periods
separately, and the ensemble performing consistently during calibration and
validation, i.e., having minimum deviation in performance from calibration to

validation, was chosen as the best.

2.4 Uncertainty Analysis of Ensembles and Models

Quantile regression technique, a stochastic approach, was used to assess the
uncertainty resulting from all sources collectively (Koenker and Bassett, 1978). This
methodology has been widely adopted to estimate the uncertainty of deterministic
forecasts (Weerts et al., 2011). This methodology was used to quantify the uncertainty
in the discharge estimated using different ensembles and models. The observed daily
discharge may be expressed mathematically in terms of ensemble discharge and

residual as:
O) =0+ e(t) (20)

where Q1) = observed daily discharge, 0(t) = ensemble discharge, and e(t) =

residual.

The method assumes a functional relationship between residuals and estimates in
Gaussian domain, i.e., normalized quantile discharge (VOD) and normalized quantile
residual (VOR). Linear relation between NOD and NOR is supported by existing
literature (Koenker and Hallock, 2001; Weerts et al., 2011). Hence, NOR may be
expressed as:
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Different quantile regression lines may be obtained by minimizing the absolute bias

by assigning different weights to positive and negative residuals in Gaussian domain.
Absolute bias may be considered for this purpose as objective function which is
expressed mathematically as:

Miny_ p [NOR—(ax NOD+b)]| )
where, a = slope, b = intercept, and p, = quantile regression function which pushes the

regression line to desired location.

To estimate the discharge corresponding to a given confidence limit, the ensemble
discharge is transformed to Gaussian domain as NOD first, and then error in Gaussian
domain, NOR is estimated using the regression line indicated by Eq. 21. The
estimated error, NOR is transformed back to original domain using pre-estimated
mean and standard deviation of residual. Finally, the estimated residual is added to

daily ensemble discharge to obtain the discharge which includes uncertainty.

Five regression lines were used to analyze the uncertainty in ensemble discharge: two
for maximum and minimum limits of 90% confidence band, two for 50% confidence
band, and one for median. The slope and intercept of these lines were estimated by
Eq. 22 using the calibration period data. Furthermore, to verify the correctness of
error models. the models were applied on the ensemble discharge during both

calibration and validation periods.

2.5 Uncertainty Comparison of Ensembles and Models

To evaluate the discharge simulated by different models and ensembles, an index,
Uncertainty, which is the area between upper and lower limit of uncertainty band was
proposed to be a measure of uncertainty. It was assumed that lower the Uncertainty,
thinner will be the uncertainty band, resulting in lower level of uncertainty in the
estimate of river discharge. Similarly, higher the Uncertainty, wider will be the band.
resulting in higher level of uncertainty. UC_Area was estimated numerically using

following equation:

n—l
UTC...IJ'&.! = (QI ; Q” ) x ZQ.’

(23)




where, 0;, O, and Q;is the simulated daily discharge of first day, last day and i" day

of considered period.

3  Results and Discussion

3.1 Model Calibration

Select models are calibrated for the period of 1/6/2004 to 31/5/2007. The performance
of the model for simulating surface runoff was evaluated using Nash Sutcliffe
efficiency (NSE) and bias as performance index (Table 2). The values of Nash
Sutcliffe efficiency in Table 2 indicate that runoff is better simulated by conceptual
models than physically based models for both catchments. Time series of model
predictions for calibration period is presented in Fig. 15 for Kesinga and in Fig. 16 for

Salebhata.

Table 2: Bias and NSE of models during calibration period

Kesinga Salebhata
Models Calibration Calibration
Bias (%) | NSE | Bias (%) | NSE
MIKE SHE -22.62 1 0.26 0.78
SWAT -24.38 0.76 29,735 0.71
HEC HMS 45.49 0.42 20.02 0.67
AWBM -28.04 0.80 -17.27 0.90
SACRAMENTO -11.77 0.89 -10.23 0.90
SIMHYD -16.04 0.89 6.32 0.86
SMAR -40.80 0.76 -45.73 0.83
TANK -2.71 0.88 0.33 0.82
Observed — MIKESHE  SWAT HEC-HMS Tank
e = SimHyd Sacramento SMAR
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Fig. 15: Observed and simulated streamflow during calibration for Kesinga
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Fig. 16: Observed and simulated streamflow during calibration for Salebhata
3.2 Model Validation

All the calibrated models were simulated for the period 1/6/2007 to 31/5/2009 by
keeping the parameters of model unaltered. Figs. 17 and 18 present the simulated
runoff’ during validation period for Kesing and Salebhata, respectively. Table 3
presents NSE and bias of different models during the validation period. The obtained

values of NSE indicate satisfactory performance of models.
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Fig. 17: Observed and simulated streamflow during validation for Kesinga.
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Table 3: Bias and NSE of models during validation period

Kesinga Salebhata

Models Validation Validation
, Bias (%) | NSE | Bias (%) | NSE
MIKE SHE -34.15 0.64 8.60 0.78
SWAT -19.08 0.77 32.29 0.83
HEC HMS 13.80 0.70 23.05 0.61
AWBM -26.41 0.77 -20.52 0.87
SACRAMENTO -12.98 0.84 -12.69 0.82
SIMHYD -15.58 0.83 7.22 0.82
SMAR -42.20 0.76 -46.47 0.75
TANK -10.76 0.83 0.41 0.82

Scatter plot for the two performance statistics (NSE and bias) for each of the models
is shown in the Fig. 19 for Kesinga and in Fig. 20 for Salebhata. Statistically the best

models are those with efficiencies approaching 1.0 and biases near 0%.

From Fig. 19 it clear that seven of the eight models are under-predicting (negative
bias) with absolute bias as high as -28.04% for AWBM, with only HEC-HMS
resulting in over-prediction (45.49 %) for calibration period for Kesinga. Among all
the models, TANK is giving optimum results with the bias just near 0% followed by
SACRAMENTO, and both of them have high NSE efficiency too compared to other
models. When predictions in validation period are assessed, the relative positions of
the models remain largely unchanged. Two of the models, i.e., HEC-HMS and SWAT
have increased efficiencies in the validation periods. NSE values are varying from

0.42 to 0.89.

Similar analysis was done for Salebhata as presented in Fig. 20 which reveals that
during calibration period most of the models are over-predicting (positive bias) except
for SACRAMENTO, SMAR and AWBM, with over-prediction as high as 29.75% for
SWAT and under-prediction as high as —45.73% for SMAR. Among the models,
TANK and MIKE SHE are giving bias near 0%, thus giving optimum prediction.
When predictions in validation period are assessed, the relative positions of the
models remain largely unchanged; TANK and MIKE SHE are showing little change
in results for both calibration and validation while for HEC-HMS and SWAT




validation efficiency is better than calibration. NSE values are varying from 0.61 to
0.90.

It is observed that in both cases lumped conceptual models have higher efficiency
(high NSE value) than the physically based models. All the models are performing
better in case of Salebhata than in Kesinga because of better correlation between

rainfall-runoff data in Salebhata.
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3.3 Identification of the Best Multi-Model Ensemble Method

Multi-model ensemble of all eight models were developed using eight ensemble
methods listed in section 2.2.3 considering all models at a time for both the
catchments. Eq. 2 and 14 were employed to estimate correlation coefficient R and
root mean square error (RMSE) for all the eight methods using the ensemble
simulated and observed discharges. Fig. 21 presents the scatter plot of RMSE and R
for different ensemble methods in case of Kesinga. Each method is denoted by two
points in Fig. 21: one corresponding to calibration and the other validation. RMSE for
different methods varies from 262 m’/s to 328 m'/s during the calibration period and
from 412 m*/s to 500 m’/s during the validation period. The correlation coefficient, R,
varies from 0.93 to 0.96 during the calibration period and from 0.91 to 0.93 during the
validation period. Fig. 21 shows that MMSE method results in the lowest RMSE and
the highest correlation coefficient during the calibration period, however its
performance deteriorates during the validation period. The Weighted average method
(WAM_K_1.5) method, on the other hand, performs satisfactorily during both
calibration and validation periods. Hence, WAM_K 1.5 was chosen as the best

performing ensemble method for Kesinga.

Similarly, Fig. 22 presents the scatter plot of RMSE and R of different ensembles
resulting from different ensemble methods during calibration and validation periods in
case of Salebhata catchment. RMSE for different methods vary from 75 m’/s to 90
m’/s during the calibration period and from 72 m'/s to 77 m’/s during the validation
period. The correlation coefficient varies from 0.94 to 0.96 during the calibration
period and 0.94 to 0.95 during the validation period. Fig. 22 shows that MMSE
method results in lowest RMSE and highest correlation during the calibration period,
whereas, the RMSE using this method is very high during the validation period.
However, linear programming method (LP), on the other hand, performs satisfactorily
during both calibration and validation periods. Hence, LP was chosen as the best

performing ensemble method for Salebhata.

The results show that though the multi-model super ensemble (MMSE),
recommended earlier as the superior method (Ajami et al., 2006), performed well

during the calibration period, its performance deteriorated during the validation
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period. This shows that an ensemble method must be checked for its performance

during both calibration and validation before its application.

500
& Mean
45 A B Median
0 1 * " A Trimmed mean
\ . X SMA
400 - X WAM_K=1
= Validation @ WAM_K=1.5
B s - MMSE
; 350 A 5 -LP
I~ A m
300 - y
3 X ’
250 -
Calibration
200 : - : : )
091 0.92 0.93 0.94 0.95 0.96

R

Fig. 21: Scatter plot of root mean square error (RMSE) and correlation coetficient R
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3.4 Identification of the Best Ensemble

As described in section 2.3.1, 189 possible ensembles were developed using the
weighted average method (WAM K 1.5) and the linear programming (LP) method,
for Kesinga and Salebhata, respectively. Weights of different members in an
ensemble were estimated using the data of calibration period only. The estimated
weights were then used for estimation of corresponding ensemble discharge during
validation period. In order to construct multi-category contingency table, frequency
analysis of the observed discharge during 1% Jun 2004 to 31% May 2009 was
performed using the Weibull plotting position method for both catchments, F igs. 23
and 24 present the frequency distribution of the observed discharge, which was used
to identify discharges corresponding to different levels of probability for Kesinga and
Salebhata, respectively. These discharge levels were subsequently used to define the
upper and lower limits of ten equi-probable bins in case of both catchments. Tables 4
and 5 present the upper and lower discharge, i.e., threshold discharge, corresponding

to different bins for Kesinga and Salebhata, respectively.
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Fig. 23: Frequency distribution of observed discharge for Kesinga
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Fig. 24: Frequency distribution of observed discharge for Salebhata

Table 4: Thershold discharge for different bins for Kesinga

50

100

Discharge, m¥/s

Bin Probability range Discharge range
Lower  Upper Lower Upper
(m’/s) (m’/s)
1 0.0 0.1 0.00 40.32
2 0.1 0.2 40.32 52.68
3 (h2 0.3 52.68 65.85
4 0.3 0.4 65.85 85.52
5 0.4 0.5 85.52 115.96
6 0.5 0.6 115.96 150.14
7 0.6 0.7 150.14 200.00
8 0.7 0.8 200.00 325.77
9 0.8 09 32577  630.18
10 0.9 1.0 630.18 inf
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Table 5: Threshold discharge for different bins for Salebhata

Probability range Discharge range
Bin
Lower  Upper %;\;,:; EE /:;
1 0.0 0.1 0 .37
2 0.1 0.2 0.37 1.15
3 0.2 0.3 1.I5 1.62
4 0.3 0.4 1.62 2.12
5 0.4 0.5 2,12 4.85
6 0.5 0.6 4.85 10.44
7 0.6 0.7 10.44 271.67
8 0.7 0.8 27.68 47.96
9 0.8 0.9 47.96 123.79
10 0.9 1.0 123.79 inf

3.4.1 Categorical and Temporal Performance

Once the bins were defined, these were used to develop the multi category
contingency table for all 189 ensembles for both calibration and validation periods for
both the catchments. This was followed by development of Relative Operating
Characteristic (ROC) curve and estimation of area under the curve as discussed in
section 2.3.3. Number of skillful days, N, was also estimated for all the ensembles, as
discussed in section 2.3.4. Figs. 25a and 25b present the scatter plot of ROC Area and
N for various ensembles (represented by dots) during the calibration and validation
periods, respectively, in case of Kesinga catchment and Figs 25¢ and 25d.
respectively, in case of Salebhata catchment. A total of 189 dots in these plots
represent different ensembles. The values of ROC area and N, were further used to
estimate the normalized ROC area, and normalized N, as discussed in section 2.3.5.
The mean and standard deviation used for the normalization of ROC area are 0.741
and 0.0125, respectively, during the calibration period, and 0.65 and 0.015 during the
validation period in case of Kesinga. The mean and standard deviation used for the
normalization of Ny were 769.4 and 219.16, respectively during the calibration period,
and 496.84 and 146.16 during the validation period in case of Kesinga. Similarly, in
case of Salebhata, mean and standard deviation used for the normalization of ROC
were 0.754 and 0.025, respectively, during the calibration period, and 0.69 and 0.049
during the validation period. The mean and standard deviation used for the

normalization of N, were 841.17 and 170.64, respectively, during the calibration
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period, and 610.78 and 126.23 during the validation period in case of Salebhata. Figs.

26a and 26b present the scatter plot of normalized ROC area (Norm ROC) and
normalized N; (Norm_Ny) for various ensembles during the calibration and validation
‘periods for Kesinga catchment, and Figs. 26¢ and 26d for Salebhata catchment. The
ensembles in the upper right corner of the scatter plot represent the ensembles that
have superior performance with respect to both categorical and temporal

performances, i.e., higher ROC Area and higher number of skillful days.
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3.4.2 Ensemble selection

Normalized ROC area and Ny were used to develop SCORE as discussed in section
2.3.5, which was further used to rank the performance of different ensembles during
both calibration and validation periods separately. Table 6 presents the performance
of ten top performing ensembles of Kesinga during the calibration period, and their
corresponding performance during the validation period. The ensembles were ranked

according to their SCORE, i.e., the ensemble corresponding to highest SCORE was

AL
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given as first rank and that of lowest SCORE was given as the last. Ranks of various
top performing ensembles during calibration period were analyzed for minimum
deviation from calibration to validation period. As evident from Table 6, the top
performing ensemble during the calibration period, i.e., ‘245678 performs poorly
during the validation period and obtains 36" rank. The same is true for the second best
ensemble during the calibration period, i.e., “247" which goes to rank 29" during the
validation period. The ensemble that performs consistently better during both
calibration and validation is ‘24678’ with ranks of 3 and 13 during the calibration and
validation periods, respectively. The location of ensemble ‘24678’ in scatter plot is
also shown using a triangle in Figs. 27a and 27b in case of calibration and validation
periods, respectively. As expected, this ensemble lies in the upper-right corner during
the calibration (Fig. 27a). However, during validation there is a slight deviation from
the upper right corner (Fig. 27b), though the ensemble still lies in between 1.5-2.0
band of SCORE. The location of the selected ensembles in Figs. 28a and 28b,
depicting high SCORE values, re-establishes their superior performance. Hence,
ensemble ‘24678 i.e., the ensemble of SWAT, TANK, SIMHYD, SACRAMENTO
and SMAR, developed using weighted average method based on calibration

performance, was selected as the best ensemble for Kesinga.

Similarly, Table 7 presents the performance of ten top performing ensembles of
Salebhata during the calibration period, and their performance during the validation
period. As evident from Table 7, the top performing ensemble during the calibration
period, i.e., “24678" performs poorly during the validation period. The same is true for
the second, third, fourth and fifth best ensemble during the calibration period. The
ensemble that performs consistently better during both calibration and validation is
*23467°, with ranks of 6 and 10 during the calibration and validation periods,
respectively. The location of ensemble ‘23467 is also shown in Figs. 28a and 28b
using a triangle in case of calibration and validation, respectively. As expected, this
ensemble lies in the upper-right corner relative to other ensembles in both the plots,
re-establishing its superior performance. Hence, the ensemble ‘23467°, i.e., the
ensemble of SWAT, HEC-HMS, TANK, SIMHYD and SACRAMENTO, developed
using linear programming method, was selected as the best ensemble for Salebhata.
The results show that the best ensemble of both catchments i.e., 24678 for Kesinga

and “23467" for Salebhata, have five ensemble members. This finding is in agreement
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with the earlier findings that four to five models are necessary in an ensemble for
obtaining the skillful results (Buizza and Palmer, 1998; Georgakakos et al., 2004;
Ajami et al., 2006). The results also show that the best ensemble of Kesinga includes
the best performing model for Kesinga, i.e., TANK (section 3.2), whereas, the best
ensemble of Salebhata doesn’t include the best performing model for Salebhata, i.c.,
MIKE SHE (section 3.2) based on calibration and validation performance. These
findings are in agreement with earlier findings of Viney et al. (2009), i.c., the best

ensemble may not necessarily contain the best individual model.
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Figs. 29a and 29b present the temporal variation of observed and simulated ensemble
discharges (using the best ensemble ‘24678") for Kesinga during the calibration and
validation periods, respectively. Similarly, Figs. 30a and 30b present the temporal
variation of observed and simulated ensemble discharges (using the best ensemble
“23467’) for Salebhata. It is evident that the selected ensembles are able to capture the
observed discharges well. To reinforce this observation, the observed and simulated
-ensemble discharges for the calibration and validation periods are also plotted on 1:1
line in Figs. 31a and 31b for Kesinga, and Figs. 32a and 32b for Salebhata. The scatter
plots show that during both calibration and validation periods, data points are spread

equally on either side of the 1:1 line with minor deviation from 1:1 line.
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Comparison of the Best Ensemble with Individual Models

Performance of the selected ensembles, i.e., 24678 for Kesinga and ‘23467 for

Salebhata, were analyzed statistically for calibration and validation periods using

Nash

Sutcliffe Efficiency (NSE), RMSE and R. Figs. 33a and 33b present the
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comparison of the selected ensemble performance for Kesinga with that of individual
models during calibration and validation, respectively. Similarly, Figs 34a and 34b
present the comparison of the selected ensemble for Salebhata with that of individual
models during calibration and validation. NSE of the selected ensemble is found to be
0.9 during the calibration period and 0.85 during the validation period (NSE of
individual models ranges from 0.42-0.89 during calibration and 0.64-0.84 during
validation) in case of Kesinga. Similarly, NSE is 0.92 during the calibration period
and 0.9 during the validation period (NSE of models ranges from 0.67-0.90 during
calibration and 0.60-0.87 during validation) in case of Salebhata. RMSE of ensemble
24678’ is 282 m’/s during calibration period and 420 m*/s during validation period
(RMSE ranges from 296-691 m’/s during calibration and 426-645 m’/s during
validation) in case of Kesinga. Similarly, RMSE is 79.6 m*/s during calibration period
and 70.8 m’/s during validation period (RMSE ranges from 85-157 m’/s during
calibration and 79.6-137 m’/s during validation) in case of Salebhata. The figures also
show that correlation coefficient of the selected ensemble is higher than that of
individual models for both catchments. This shows that NSE and R of the selected
ensemble is higher and RMSE is lower than any of the individual models for both
catchments. The statistical values, thus, show that the selected ensembles perform

better than individual models.
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3.5 Uncertainty Analysis

In this section uncertainty in the discharge simulated by the best ensemble, different

models and different ensembles are estimated and analyzed for both catchments. This
is followed by assessment of advantages gained in terms of uncertainty reduction as a

result of using ensemble over individual models.

3.5.1 Uncertainty Assessment of the Best Ensemble

Uncertainty in river discharge estimated by the selected ensembles for both
catchments were analyzed using quantile regression technique, as discussed in section
2.4. Mean and standard deviation of ensemble discharge for the calibration’ period
were estimated as 267.3 m’/s and 890 m’/s, respectively, for Kesinga, and 68.7 m’/s
and 274.2 m’/s for Salebhata. The mean and standard deviation for residual are 45.6
m’/s and 278.6 m’s, respectively, for Kesinga, and 3.3 m’/s and 79.6 m’s,
respectively, for Salebhata. Figs. 35 and 36 present the scattered plot of normalized
quantile residual (NQR) and normalized quantile discharge (NQD) along with five
regression lines for Kesinga and Salebhata, respectively. In these plots, two lines
correspond to upper and lower limits of 90% confidence interval (CI), two
corresponding to upper and lower limits of 50% CI, and one corresponding to median.
Table 8 presents the slope and intercept of these regression lines, which provide the

relationship between residual and discharge in Gaussian domain for Kesinga and
Salebhata.

Table 8: Slope and intercept of error line for Kesinga and Salebhata

S.N. CI Limit Kesinga Salebhata
Slope Intercept Slope Intercept
1 Median - -0.42 -0.07  -0.25  -0.11
2 90% Lower -2.05 -0.67  -290  -0.80
3 90% Upper 1.75 0.91 1.68 0.93
- 50% Lower -1.09 -0.33  -1.05  -0.32
5 50% Upper 0.19 0.22 0.59 0.24

Figs. 37a-37c¢ present the confidence interval (CI) of daily discharge for the selected
ensemble of Kesinga for three monsoon seasons during the calibration period, i.c.,
2004, 2005 and 2006, respectively, whereas, Figs. 38a and 38b present the CI of daily
discharge during the validation period for two monsoon seasons, i.e., 2007 and 2008,
respectively. Similarly, Figs. 39a-39¢ and Figs 40a—40b present the corresponding CI

of daily discharge for the selected ensemble of Salebhata during the calibration and
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validation periods. It is evident from Figs. 3740 that most of the observed data fall
within 50% or 90% CI bands which indicate the accuracy of the developed error
model. However, in case of validation period (Figs. 38 and 40), a few data points fall

outside the defined bands.
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3.5.2 Uncertainty Assessment of the Hydrological Models in Simulating River

Discharge

To estimate the uncertainty in river discharge simulated by different hydrological

models, error models were developed for each of them for both catchments using

quantile regression technique. Figs. 41 and 42 present the error model of different

hydrological models for Kesinga and Salebhata, respectively. The dots in these

figures present the daily simulated discharge and residual in normalized domain,

‘whereas, red and green lines in figures 41 and 42 correspond to 90% and 50%

confidence interval, respectively. Two lines in both the color category indicate the

upper (upper line) and lower limits (lower line) of respective confidence band. Tables

9 and 10 present the intercept and slope of these lines for Kesinga and Salebhata,

respectively.

-65-




(a) MIKE SHE - (b) SWAT

Fig. 41: Error models of different hydrological models for 90% (red) and 50% (green)

Cl in case of Kesinga
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(a) MIKE SHE (b) SWAT

Fig. 42: Error models of different hydrological models for 90% (red) and 50% (green) .
Cl in case of Salebhata




Table 9: Intercept and slope of error models for different hydrological models in case

of Kesinga
50% CI 90% CI

Model Limit Intercept  Slope  Intercept Slope

Upper limit 0.20 0.73 0.70 1.85
MIKE SHE

Lower limit -0.30 -0.55 -0.52 -1.18

Upper limit 0.19 0.18 0.76 1.58
SWAT

Lower limit -0.25 -0.66 -0.47 -1.26

Upper limit 0.20 -0.51 0.59 0.14
HEC HMS

Lower limit -0.25 -1.47 -0.39 -1.78

Upper limit 0.19 0.07 0.83 1.49
TANK

Lower limit -0.37 -1.33 -0.67 -2.13

Upper limit 0.19 0.52 0.68 1.61
AWBM

Lower limit -0.33 -0.88 -0.51 -1.37

Upper limit 0.27 0.13 0.90 L:1b
SIMHYD

Lower limit -0.42 -1.51 -0.67 -2.22

Upper limit 0.23 0.00 1.05 1.90
SACRAMENTO

Lower limit -0.37 -1.37 -0.61 -1.99

Upper limit (.22 0.45 0.98 1:73
SMAR

Lower limit -0.37 -0.95 -0.51 -1.40.

The developed error models were used to estimate the uncertainty in river discharges
simulated by different models during calibration and validation periods. Fig. 43
presents the 50% and 90% confidence band of river discharge simulated by different
models in case of Kesinga during calibration period. The gray and blue band
represents the 90% and 50% confidence band of discharge, respectively. In order to
clarify Fig. 43, a part of this figure (uncertainty band of SACRAMENTO model i.e.,
43g) is enlarged in Fig. 44. This figure shows that most of the observed data points
are within the uncertainty band. Similarly, Fig. 45 presents the uncertainty bands of
river discharge simulated by different models in case of Salebhata during calibration
period. Area under the uncertainty bands at 50% CI and 90% CI was considered as a
measure of uncertainty in discharge simulated by different models and ensembles.

The estimated area was used to compare the uncertainty level of selected ensembles
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with that of individual hydrological models. Uncertainty bands were also developed
during validation periods for both catchments to estimate the area under the band, and
subsequently to compare the uncertainty level of selected ensembles with that of

individual hydrological models.

Table 10: Intercept and slope of error models for different hydrological models in

case of Salebhata

50% CI 90% ClI
Model Limit Intercept Slope Intercept Slope
Upper limit 0.03 -0.62 0.36 0.30
DRt Lowet limic =Dl -1.06 -0.12 -1.07
Upper limit 0.02 -0.78 0.26 -0.15
s Liower limge <009 -1.09 -0.10 -1.14
Upper limit ~ 0.02 -0.87 0.23 0.38
GlBLENGS Lawer limit  ~0:06 -1.06 -0.06 -1.07
Upper limit 0.02 -0.77 0.31 -0.02
e Liower it 008 -1.05 -0.09 -1.08
Upper limit 0.02 -0.74 0.22 -0.16
Ao Lower it  —0.08 -1.07 -0.10 -1.12
Upper limit 0.02 -0.74 0.24 -0.09
R Lower Limie  ~0-07 -1.06 -0.08 -1.09
Upper limit 0.01 -0.78 0.23 -0.20
MR IR Lower Bmie  ~9-07 -1.04 -0.08 -1.09
Upper limit 0.02 -0.73 0.20 -0.10
=i Lowerhmiy 009 -1.07 -0.09 -1.09
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of Kesinga during calibration period




Imuhl

pouad uoneiqies Suumnp eFuIsay| Jo ased Ut [opow O INANVIIVS 10] 351eYdSIp JO pueq AJUTELIIUN JO MIIA PAWOOZ Y ipf “S1]

ae(

€00Z-01-10 §00Z-90-10

L00T-T0-10 900Z-01-10 900T-90-10 900¢-¢0-10

paALasqQ) -

£002-20-10

~

[D %05 m

#002-01-10

F00C-90-10

1D % 06!

= 0

- 0008

- 00001

s/. ‘aBreyasiq




v 20000 -
' (a) MIKE SHE 590% CI m50% CI

15000

10000

Discharge, m¥/s

5000 - i

!
!
| """J [ L bR
() skl ik Aokl K .
T

S

01-06-2004 01-12-2004 01-06-2005 01-12-2005 01-06-2006 01-12-2006

Date
15000 -
(b) SWAT B90%Cl ®50% CI
2 10000 -
. E
= o
o
g
g ? :
A 5000 | , %
! Ll
I:‘ i |
0 4 l w “‘,w, L
01-06-2004 01-12-2004 01-06-2005 01-12-2005 01-06-2006 01-12-2006
Date

Sl




Discharge, m¥/s

Discharge, m’/s

15000

>

(=

(=]

=
L

5000 ~

0 -
01-06-2004

25000 +

20000 -

15000 -

10000 -

5000 -

(¢) HEC HMS

01-06-2005

(d) TANK

90% ClI m350% CI

01-06-2006
Date

790% Cl1 m50% Cl

01-06-2004

—r-

01-02-2005

01-10-2005 01-06-2006 01-02-2007
Date




15000 +

(e) AWBM H90%CI m50% Cl
2 10000 - ;
E
" ‘
=11] |
5 , 1
3 ! |
A 5000 - ; ,‘
.‘ | i !
0 +& s ¥ _ ‘A ."1 = T
01-06-2004 01-02-2005 01-10-2005 01-02-2007
Date
25000 -
(f) SIMHYD m90 %Cl W50% CI
20000 -
= 1
£ 15000 - ?
L]
0 |
3]
5 10000 - f
8 i
5000 - g
[ | %
Oﬂjﬂm wha Laill .
01-06-2004 01-02-2005 01-10-2005 01-06-2006 01-02-2007
Date
g ©90%Cl  m50% CI
(g) SACRAMENTO A A
@ 15000 - |
: |
£ 10000 - ,
= |
2
25000 - ;
| | l
01-06-2004 01-02-2005 01-10-2005 01-06-2006 01-02-2007
Date

-76-




15000 -

— -
(h) SMAR 90%CI m50% CI
% 10000 - f
<
en
g
—
&
£ 5000 -

|l [ 1l

. . I I'm

0 _MA—L » ﬂ .| w L
01-06-2004 01-02-2005 01-10-2005 01-06-2006 01-02-2007

Date

Fig. 45: 90% (grey) and 50% (blue) uncertainty band of discharge simulated by different models
in case of Salebhata during calibration period

3.5.3 Uncertainty Comparison of the Best Ensemble with Individual Models

In order to assess the advantage gained using ensemble rather than individual models,
uncertainty level (referred as Uncertainty), i.e., area under the uncertainty band for different
uncertainty levels, of the selected ensemble during calibration and validation periods was
compared with that of individual models for both catchments. Figs. 46a—46b and Figs. 47a-47b
present the uncertainty level of the best ensemble and the individual hydrological models in
simulating river discharge during calibration and validation periods for Kesinga at 90% and 50%
CI, respectively. Similarly, Figs. 48a-48b and Figs. 49a—49b present the uncertainty level of the
best ensemble and the individual hydrological models in simulating river discharge during
calibration and validation periods for Salebhata. It is evident from Figs 46 —49 that uncertainty
level of the best ensembles is lesser than any of the hydrological models considered in case of
both catchments at both 50% and 90% confidence levels. These results show that ensembles
reduce uncertainty. These results are in agreement with earlier findings that multi-model

ensembles reduce uncertainty at different stages (Singh and Sankarasubramanian, 2014).
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Annexure-VI

CONCLUSIONS/RECOMMENDATIONS

The following specific conclusions are drawn from the study:

(R

(8]

Weighted average based on calibration performance (WAM_k 1.5) and linear programming
methods are the best ensemble methods for Kesinga and Salebhata catchment, respectively.
The ensemble of SWAT, TANK, SIMHYD, SACRAMENTO and SMAR is the best
ensemble for Kesinga, whereas, the ensemble of SWAT, HEC-HMS, TANK, SIMHYD and
SACRAMENTO is the best ensemble for Salebhata.

The selected ensembles outperform individual models in simulating river discharge for both
Kesinga and Salebhata.

The uncertainty level of the selected ensemble is lower than that of individual models.
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