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ABSTRACT 

 

The rapid urbanization all around the world is a matter of concern to the scientific community. 

Though urbanization is a worldwide phenomenon, it is especially prevalent in India, where 

urban areas have experienced an unprecedented rate of growth over the last 30 years. Presently, 

India has the second largest urban population of the world and is projected to have the highest 

urban growth rate in the next 30 years. 

The urban regions are reported to have a warmer temperature in comparison to its surrounding 

rural areas; this phenomenon is recognized as the Urban Heat Island (UHI) effect. The 

formation of UHI has been shown to have a seasonal and diurnal variation. We observe the 

characteristics of Surface Urban Heat Island (SUHI) over 84 large urban centers of India. The 

novel SUHI seasonality observed in terms of cool SUHI over summer season is largely 

explained with the regional meteorology, vegetative condition and BC emission. The 

investigation reveals a higher depletion of vegetative land cover over the surrounding non 

urban region than the urban region during the summer season. The key findings of the study 

lies in unique set of SUHI characteristics and a higher diurnal temperature range of the nearby 

non-urban areas.  

We take up an observational study to understand the influence of urbanization on mesoscale 

circulations and resulting convection, thus the nature of precipitation around urban areas. We 

evaluate the statistically significant changes in selected rainfall statistics of the Indian Summer 

Monsoon and investigate the explicit changes around urban land use in context of 40 large 

Indian urban areas. We find that rainfall activities are enhanced around the urban areas across 

different climate zones of the country. An additional examination of urbanization influence on 

heavy rainfall climatology is carried out through a point scale experiment with statistical 

framework of quantile based regression for the most populated city of India Mumbai, in pair 

with a nearby non-urban area Alibaug. The resultant extreme rainfall regression quantile also 

point toward sensitivity of extreme rainfall events to the local land use under urbanization.  

The densely populated urban centers require a reliable weather forecast system to ascertain 

effective management of facilities, especially under the extreme weather conditions. The 

currently available precipitation forecast with numerical weather prediction models is limited 

to averages over larger areas, moreover the hydrological processes that occur on finer scales, 



3 

 

typically the circulation pattern leading to the extreme events remains unresolved. To overcome 

this limitation a statistical methodology is proposed for extreme precipitation forecast over the 

urban region of Mumbai, India. The methodology is employed undertaking the forecast output 

from the numerical weather forecast from Global Ensemble Forecasting System (GEFS).  The 

model testing and validation results reveal the sensitivity of forecasting skill to the selection of 

predictor variables. The proposed model yields reasonably well forecasting performance and 

may provide a promising alternative for forecasting extreme rainfall occurrences over the city 

of Mumbai.  

Climate projections are very important to understand the behaviour of different atmospheric 

processed under the changing global climate. Precipitation downscaling improves the coarse 

resolution and poor representation of precipitation in global climate models, and helps end 

users to assess the likely hydrological impacts of climate change. The two downscaling 

techniques namely dynamic and statistical downscaling, are widely used for this purpose. A 

major limitation of dynamic downscaling is the requirement of very high computational 

efficiency, the statistical downscaling remains relatively non expensive but does not take care 

of the physical processes. Here we propose a novel approach integrating the outputs from the 

statistical and dynamic downscaling methodology with the dynamical downscaling outputs for 

projection of extreme precipitation events.  We observe the spatiotemporal growth of the city 

of Mumbai from 1973 to 2010 and obtain the urban land use projections for 2050. The 

representative climate projections obtained limited dynamical downscaling runs taking the 

changes in urban land use into consideration. The model runs reveals the changes in 

precipitation climatology at higher quantiles. These results are integrated with the statistical 

downscaling outputs to obtain a more realistic projection of extreme events. 

Overall, this study highlights the important role of land use land cover and urbanization for 

understanding the mesoscale rainfall changes as part of regional climate change. The Indian 

urban regions reveal diverse SUHII characteristics than that reported in other parts of the world. 

The intensified the extreme rainfall in Mumbai under the influence of urbanization. However, 

the impacts of urbanization over heavy rainfall climatology are observed to be non-uniform 

across the country mainly resulting from dominating zonal trends. An integrated of dynamic 

and statistical downscaling approach is found to be much valuable to progress in the field of 

objective extreme weather forecasting as well as projections. 
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The scope for future studies includes i) A hypothesis driven model simulations and experiments 

to identify the detailed mechanism governing the behaviour of SUHII as well as the local scale 

physical mechanism during extreme rainfall events ii) An investigation may be undertaken for 

quantifying the impact and estimation of uncertainties associated with influence of urbanization 

over changes in regional rainfall pattern for better assessment of urban planning, water 

resources management and urban flooding. iii) the role of satellite based cloud data may be 

examined to improve the urban extreme forecast  iv) development of computationally 

inexpensive data driven models integrating statistical and dynamical downscaling outputs to 

address urban climate related research questions.  
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Chapter 1 : INTRODUCTION 

 

1.1 Urbanization 

 

Since the evolution of civilized society, man has modified the natural landforms for catering 

different community needs. The legendary cities have been identities of various eras of 

civilization and became landmarks of advancement of the civil society at the times. For many 

decades, centuries in some cases, cities have been spreading (Anas et al. 1998). Extended from 

the ancient times urbanization today is the defining phenomenon of the 21st century.  

Rapid urbanization all around the world is a matter of concern to the scientific community. The 

fast growing urban areas carries out huge anthropogenic activities that burdens natural 

environment and its resources like air-water quality and space, thus have different climatology 

to their rural surroundings. Earth's climate is rapidly changing which is hard to explain by its 

natural variability and realized incident largely by disruptive impacts of various human 

activities.  

With the industrial revolution in 1830s and the subsequent increase in the world’s population, 

rapid land use/land cover (LULC) change has been underway. Forests have been altered to 

support farmland, grassland, and other land uses; natural landscapes have been modified to 

support settlement causing urbanization to rise. As specified by the United Nations (UN) report 

(2003) projects that almost all global population growth in the next 30 years will be 

concentrated in urban areas. On the same line the World Bank Institute of urban development 

gives an overview that for the first time in history, more than half the world’s population lives 

in cities, with 90 percent of urban growth taking place in the developing world.  

Though urbanization is a worldwide phenomenon, it is especially prevalent in India, where 

urban areas have experienced an unprecedented rate of growth over the last 30 years. During 

the last 50 years the population of India has more than doubled, but the urban population has 

grown nearly five times. The number of Indian mega cities will increase from the current three 

(Mumbai, Delhi and Kolkatta) to six by the year 2021 (including Bangalore, Chennai and 

Hyderabad), when India will have the largest concentration of mega cities in the world 

(Chakrabati 2001).  According to the World Bank’s urban challenges studies for India, the 

estimated urban population will reach 500 Million by year 2017. 
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1.2 Climate change 

 

Climate change refers to any systematic change in the long-term statistics of climate elements 

(such as temperature, pressure, or winds) sustained over several decades or longer time periods 

(American Meteorological Society, http://amsglossary.allenpress.com/glossary). Human 

activities contribute to climate change by causing changes in Earth’s atmosphere in the amounts 

of greenhouse gases, aerosols and cloudiness. For thousands of years, the Earth’s atmosphere 

has changed very little. Temperature and the balance of heat-trapping greenhouse gases have 

remained just right for humans, animals and plants to survive. But, the human-induced 

enhanced effects are causing environmental concern, with its potential to warm the planet at a 

rate that has never been experienced in human history. According to NASA's Goddard Institute 

for Space Studies, average temperatures have climbed 0.80C around the world since 1880, 

much of this in recent decades. Also a number of climate studies indicate that the 20th century's 

last two decades were the hottest in 400 years and possibly the warmest for several millennia. 

The United Nations' Intergovernmental Panel on Climate Change (IPCC) reports that 11 of the 

past 12 years are among the dozen warmest years since 1850.  

Almost all meteorological parameters have seen changes in the last century. In particular 

rainfall has been observed to increase and become more intense. Several studies indicate this 

could be a signature of global climate change/warming (Allan and Sodden, 2008; Goswami et 

al. 2006). Both observational and modeling studies suggest that with warming, higher 

evaporation and precipitation rates can occur, which could lead to an overall acceleration of 

the global water cycle (Webster et al. 2005; Trenberth 2005). The events of excessive amounts 

of rainfall have also increased over the past 50 years. The consequences of global warming are 

reflected in global as well as regional climate in terms of changes in key climatic variables such 

as precipitation and atmospheric moisture, snow cover, extent of land and sea ice, sea level and 

patterns in atmospheric and ocean circulation. Therefore, study of climate change is necessary 

to understand its impact on hydrological processes. Water resources are inextricably linked 

with climate so the prospect of global climate change has serious implications for water 

resources and regional development (IPCC, 2007). 
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1.3 Urban climate and urban heat island 

 

The process of urbanization involves removal of local vegetation, draining of marshes and 

turning the natural soil into impervious paved surfaces such as roads and buildings. In addition 

to this other human activities taking place in urban areas encourage generation of greenhouse 

gases. The increasing number of industries and automobiles tend to alter chemical composition 

of the atmosphere, the thermal and hydrological properties of the earth’s surface as well as the 

aerodynamic roughness parameters. This effect is coined in terms of Urban Heat Islands (UHI) 

that involve temperature differences measured over space i.e. urban to rural with the surface 

heating as a main driving factor. Urban areas are warmer, like an “island” of heat surrounded 

by cooler rural areas. Large horizontal temperature gradient exist at the urban/rural boundary, 

could be as large as 4°C/km Urban areas appear like a “plateau” with weaker increasing 

gradient. The impacts of urban heat islands can be best understood by studying the nature and 

characteristics of urban climate. 

With the same amount solar radiation received by an acre of forest/cropland and the densely 

built up urban area the green space remains cooler than the built up because of transpiration 

and shading of the ground, whereas the urban surfaces get much hotter than vegetated surfaces. 

The built up areas also release this energy at night, creating a dome of warmer air at night 

(Olanrewaju, 2009). Almost every city in the world is between 1-40C hotter than its 

surrounding areas.  

 

Figure 1.1Schematic depiction of the main components of the urban atmosphere 

(http://www.actionbioscience.org) 

 

1.4 Influence of urban heat island on precipitation 

Urban microclimate is the climate develops over a city and modified by variation in aspect, 

shape and form of the ground, soil moisture and surface vegetation (Oke, 1988). The urban 

http://www.actionbioscience.org/
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microclimate affects the heat and water balance, water runoff and causes differences in 

temperature, precipitation and cloud cover of the area. Furthermore, it impacts the local 

meteorology by altering local wind patterns, forming cloud and fog, increasing humidity, and 

changing the precipitation rate. 

Observational and climatological studies have theorized that the UHI can have a significant 

influence on mesoscale circulations and resulting convection. Thus due to the influence of UHI 

the nature of precipitation in and around urban areas has become unpredictable using the 

conventional methods and existing models. Metropolitan Meteorological Experiment 

(METROMEX) studies have shown that urban effects lead to increased precipitation during 

the summer months and this increased precipitation is typically observed within, and 50–75 

km downwind of the city.   

 

1.5 Identification of the research gap 

 

According to the 2011 Census, the urban population growth of India is reported at 2.76 % per 

annum during 2001-2011 with the total urban population of 377 million. The level of 

urbanization in the country has increased from 27.7% in 2001 to 31.1% in 2011. The existing 

urban centers have visibly expanded also a huge number of new towns emerged during the last 

decade, contributing significantly to the speeding up of urbanization. 

Functioning as centre of economic activities the urban areas are reported to have a different 

climatology. The causative factors of the UHI effect given by Oke (1982) have been confirmed 

and further broadened through a variety of studies around the world. Compared to non-built 

surroundings, built-up areas of cities differ considerably in albedo, thermal capacity, 

roughness, etc. which can significantly modify the surface energy budget (Arnfield, 2003). A 

number of studies suggest that the intensity of UHI could be increased by anthropogenic 

heating (including contributions from vehicles, building sector, and human metabolism) (Sailor 

and Lu, 2004) as well as CO2 and pollutants emissions (McCarthy et al.,2010; Taha, 1997). 

The UHI of the Indian cities is mostly studied in isolation dealing with individual cities. These 

studies largely vary in terms of methodology, and empirical approaches, based on either air 

temperature or LST, attempt to reveal the linkage between the UHI intensity and various 

descriptive indicators of cities. Therefore suffering from inconsistency and instability in 

regards to the urban-rural definition, hindering the inter-comparison between results. A 
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comprehensive analysis to assess the UHI intensity of all the Indian cities with varied area, 

population and geographical location by means of remotely sensed land surface temperature 

data does not exist.  

With the increased urbanisation and industrialization (UN Habitat, 2010b) the impact of local 

scale land surface processes on regional meteorology and extreme precipitation has become 

important (Zhang etal, 1996, Karl and Trenberth 2003). Number of studies analysed impact of 

urbanization on mesoscale convection and precipitation found that the urbanization has an 

important feature in regional meteorology (Oke, 1988, Shepherd et al., 2002, Rozoff et al., 

2003, Gero and Pitman 2006, Pyle et al., 2008). A significant number of studies reports 

intensification of rainfall under the influence of urbanization over the world. On the other hand 

there exists considerable debate on influences of urbanization versus large scale forcing on 

changes in extremes, and also on the pattern of changes of extremes in urban areas over India. 

The hypothesis that urbanization affects the association between extreme rainfall and synoptic 

scale weather patterns has also not yet been tested, except with a few Weather Research and 

Forecasting (WRF) model runs (Litta et al. 2010,Srinivas et al. 2013). A comprehensive 

understanding of impact of urbanization over the heavy rainfall climatology is very important 

for regional water resources planning and management. 

Occurrence of rainfall extremes are expected to increase under the warming global climate 

(Diffenbaugh et al., 2005). A correct scientific understanding and modelling of occurrence the 

extremes events is important to minimize the impacts of rainfall extremes.  Significant research 

has been carried out in the science of extremes in the last few decades (Knukel et al., 1999, 

Coles and Powell, 1996). However, there are considerable numbers of extreme events that 

remain unpredicted, and flooding related to severe storms claims many lives every year in 

different parts of the world.  The impact of extreme precipitation goes worst when it occurs 

over densely populated urban areas functioning as centre of economic activities of the country. 

For example in India the extreme rainfall event with heavy downpour about 944 mm in 24 h 

occurred in July 2005 over the urban centre of Mumbai, caused nearly 500 fatalities and the 

economic loss of 2 billion US dollars(Ranger et al., 2011).  

Numerical Weather Prediction (NWP) models based on dynamical weather equations are run 

to produce an ensemble forecast of mesoscale (20–200 km) precipitation, along with other 

meteorological variables, using synoptic scale (200–2,000 km) weather conditions  commonly 

used to provide accurate and meaningful forecasts based on the weather conditions (Giorgi et 

al., 2001). However, the current NWP ensemble forecasts are found to be typically biased and 
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underestimate forecast uncertainty resulting mainly from model structural and approximations 

of subgrid-scale processes (Goddard et al., 2001; Maraun et al., 2010) and are highly ineffective 

in predicting heavy rainfall events (Březková et al., 2010; Hong and Lee 2009; Khaladkar et 

al., 2007; Selvam 1988).  In India the National Centre for Medium Range Weather Forecasting 

(NCMRWF) produces rainfall forecasts at 50 and 35 km spatial resolution based on physics-

based models. However, these models are poor in simulating extreme rainfall in India 

(Khaladkar et al., 2007). A skilful rainfall forecasts and early prediction of the extreme events 

may help in broadcasting alerts to the population to safeguard their lives and properties before 

advancement of the flood. A warning system can also be very useful in effectively operating 

evacuation, flow diversion, preparedness of the disaster mitigation team of the existing flood 

control systems. Despite the fact that myriad previous studies have addressed the precipitation 

forecasting, as per the author’s knowledge, none of the research has addressed the one 

important attribute of the rainfall i.e. the day when certain amount of rain is received; and its 

relation to the climatic circulation pattern.  

Under the changing global and local climate it is very important to obtain the precipitation 

projections for an urban region. The regional simulation of coupled Weather Research Forecast 

(WRF) Model with urban canopy models with changes on LULC provides a precise projection 

of rainfall for future in urban regions. However the coupled model simulation demands a huge 

computational efficiency for long term simulations. For example in order to obtain climate 

projections of an individual urban region need 30 years of historical (past) and 30 for future 

simulations. Statistical downscaling is computationally inexpensive in this regard but cannot 

consider urban feedback. A methodology integrating statistical downscaling to produce a long 

term downscaling of GCMs with WRF runs over limited time period coupled with urban 

canopy model (UCM) to consider future urbanization impacts may be of much useful in this 

regard.  

 

1.6 Objective of the study  

 

The objectives of the present study can be summarized as follows: 

i) To study the characteristics of SUHII over Indian cities with its diurnal and seasonal 

variations. 

ii) To understand the factors a dependability of SUHII development over Indian cities 
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iii) To analyse the changes of Indian rainfall extremes at different urban regions, and nearby 

non–urban regions,  

iv) To test, if the changes are solely due to urbanization or affected by regional synoptic 

scale changes.  

v) To identify the observed changes in association between the synoptic scale weather 

pattern and development of urbanization. 

vi) To observe the development of Urban Hear Island of the major urban centres of the 

country 

vii) To understand the seasonal and diurnal variation of Urban Hear Island of the major urban 

centres of the country.  

viii) To provide a computationally inexpensive data driven methodology to forecast the 

occurrence of extreme rainfall event for an urban region. 

ix) To instigate the projection of extreme rainfall considering the future urban expansion. 
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Chapter 2 :  URBAN HEAT ISLANDS IN INDIA 

 

2.1 Introduction 

 

Urbanisation process involves change in Land Use Land Cover (LULC) the impact of change 

of LULC influences the regional climate (Su et. al., 2010; Su and Yang, 2007). Various studies 

have shown that land uses in a region influenced the urban temperature (Su et. al., 2010). A 

warmer surface temperature exists in the urban area due to change in land cover and population 

density. The difference between urban and surrounding rural surface temperatures is indicated 

as Urban Heat Island (UHI) (Oke, 1987). The factors such as the thermodynamic capacities of 

materials, structural geometry, and heat generating activities cause increased storage and re-

radiation of heat to the atmosphere (Arnfield, 2003). UHI is one of the most significant impacts 

of rapid urbanization and urban sprawl.  The phenomenon of urban heat islands was first 

investigated by Luke Howard (1810), through the influence of urban areas on local climate. 

Oke (1988), followed by Arnfield (2003), analyzed the drivers of urban heat island by the 

contrast of surface energy exchange between urban and suburban areas. Downward net solar 

radiation and anthropogenic heat flux produced by appliances, building heating and light, 

humans, combustion engines, and transportation constitute the two major sources of energy 

available to cause urban heat island. These sources of energy are converted into sensible heat 

fluxes, latent heat fluxes, surface heat storage, and net heat advection (Arnfield 2003). During 

the day, generally, sensible heat fluxes and latent heat fluxes mainly derived from net solar 

radiation are the largest upward heat fluxes (Voogt and Oke 2003,Oke 1988). The incoming 

solar energy partitioning between latent heat flux and sensible heat flux is modulated by 

vegetation fractional coverage and its ability to transpire soil−water per unit of vegetated area. 

In an urban area the precipitation is channelled into the storm sewers; where runoff is treated 

or discharged rather than remaining available for evaporation, at the same time the reduction 

of vegetation decreases the amount of water available for evapotranspiration. Hence, the 

replacement of natural soil or vegetation by materials used in cities like concrete or asphalt 

reduces the ability to decrease the ambient temperature through evaporation and plant 

transpiration. This largely affects Latent Heat Flux (LHF) referred as the heat released through 

the process of evapotranspiration of water. Sensible Heat Flux (SHF) refers to the heat 

transferred by conduction within different surface materials and by dry convection (vertical) 

and advection (horizontal) wind. The urban areas have an increased surface roughness because 
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of which the surface winds slows down, hence inhibiting the sensible heat loss through 

convection. The thermal properties of materials used in building urban structures also increases 

the stored amount of sensible heat within the city during daytime and it is released into the 

urban atmosphere after sunset. Thus, it can be seen that land surface temperature change and 

formation of UHIs are directly related to the LULC changes. UHI phenomena is generally seen 

as being caused by a reduction in latent heat flux and an increase in sensible heat in urban areas 

as vegetated and evaporating soil surfaces are replaced by relatively impervious low albedo 

paving and building materials. This creates a difference in temperature between urban and 

surrounding non-urban areas (Imhoff et al., 2010). 

The Land Surface Temperature (LST) refers to the radiation properties of the earth surface and 

determines the intensity of the radiation of long waves emitted by it, which is detected by 

aircrafts or satellite based remote sensing platforms (Jin and Dickinson, 2010; Urban et. al., 

2013). The temperature recorded by the synoptic measurements in weather stations is known 

as the air temperature (Tair) measured at a height of 1.5-2 m height. As the spatial distribution 

of the weather stations is limited and the dissemination of temperature data is variable, their 

use for real-time applications is limited. Compensation for this paucity of information can be 

obtained by using satellite-based methods. The land surface emits radiance differently across 

the thermal spectrum, and the emitted radiance is affected by the composition of the surface 

constituents, particularly the spectral emissivity. 

 

2.2 Motivation and Objectives 

 

India has experienced an unprecedented growth of urbanization over recent decades with urban 

population of 3.8 million(Census of India 2011). However the UHI characteristics of Indian 

urban centres are highly overlooked. The UHI studies over India are undertaken mostly with 

individual cities using varied methodology, without any specific analysis on understanding the 

characteristics of UHI, its seasonal, diurnal and spatial variability.  This study is perceived to 

address this gap in terms to provide a comprehensive observation of the UHI characteristics of 

all major urban centres of India. We attempt to analyse the SUHII based on the surface 

temperature data obtained from MODIS satellite data for 84 large urban locations in India to 

reveal the factors governing the characteristic of SUHII. To explore the drivers of surface urban 

heat islands, we observe combine satellite observations of vegetation index, and albedo, large 

scale climatic circulation, and population as a proxy of socio-economic activities. 
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2.3 Data used 

 

The population of each selected urban centre is extracted from the Census India 2011, urban 

population database. The study utilizes three major data sets namely Resolution Imaging 

Spectroradiometer (MODIS) data, large scale climate circulation from ERA Interim reanalysis 

and Black Carbon emission inventory data. 

2.3.1 MODIS satellite data 

Here we use three data sets from Moderate Resolution Imaging Spectroradiometer (MODIS) 

satellite data product: (i) Land Cover (LC) information (ii) Land Surface Temperature (LST) 

and (iii) vegetation condition (NDVI). Identification of the urban clusters is based on the 

MODIS LC type product (MCD12Q1, 500 m, annual) of the year 2008. Here we use the LC 

classification types from International Geosphere Biosphere Programme (IGBP) (Belward et 

al., 1999; Scepan, 1999) with 17 LC classes.  

We estimate the SUHII with MODIS-Aqua LST dataset (MYD11A2, 1000 m, Version 5) at 

eight-day interval. This data product is validated over a widely distributed set of locations and 

time periods via several ground-truth and validation efforts (Glynn, C. H., Simon, 2009, Cesar 

C. et al, 2009, Wan, Z. and Li, Z. 2008) and is frequently used for surface UHI analysis (i.e. 

Jin et al., 2005; Hung et al., 2006; Imhoff et al., 2010; Rajasekar and Weng, 2009; Peng et al., 

2010; Zhang et al., 2010; Zhou et al., 2010). The MODIS LST data is derived from two thermal 

infrared band channels, 31 (10.78–11.28 μm) and 32 (11.77–12.27 μm), using the split-window 

algorithm (Wan et al., 2002). This algorithm corrects for atmospheric effects and emissivity 

using a look-up table, based on global land surface emissivity in the thermal infrared (Snyder 

et al., 1998). The dataset is comprised of daytime (~13:30) and nighttime (~01:30) LSTs, 

quality control (QC), observation times, view angles, bits of clear sky days and nights, and 

emissivity estimates. The QC values provide very important information for filtering of low-

quality pixels due to clouds or other processing failures. For the current study the QC Scientific 

Data Set (SDS) for LST are extracted by reading the bits in the 8-bit unsigned integer (Wan, 

2007). The data pixels where, the error in the computed LST is less than 30K, are considered 

for this analysis.  

The vegetation indices are obtained from MODIS-Aqua product (MYD13A, 1000 m) at 

temporal resolution of 16 days. The QC information available with the data product is utilised 

to filter out good quality data to be utilised for the analysis. 
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All three MODIS data products for the present study are obtained from climate data archive at 

from the Earth Observing System Data and Information System (EOSDIS) service tool reverb: 

http://reverb.echo.nasa.gov. The LST and NDVI datasets were selected during the period 

between 2003 to 2013-14 summer (March to May) and winter (December to February). 

2.3.2 Climate Reanalysis data  

The large scale climate circulation pattern is derived from ERA-Interim (Simmons et al. 2007) 

reanalysis data produced by the European Centre for Medium-Range Weather Forecasts 

(ECMWF) at 1° latitude by longitude resolution. Here we use air temperature, Relative 

Humidity (RH), and the northward and eastward wind field. The circulation pattern observed 

at the surface level over Indian subcontinent region encompassing 5°-40° N and 60°-120° E, is 

collected for the present analysis  during 2003-2013. The ERA-Interim re-analysis project 

output of 6-hourly surface analysis fields, at 00-hr and 12-hr are collected. This selected time 

period of observation of the reanalysis data differs only by 1.5 hours from the nighttime 

(~01:30) and daytime (~13:30) LST observation. Hence, it is considered appropriate as the 

background climatic condition over development of the SUHII.   

2.3.3 Emission inventory data 

Emission inventories are important research and regulatory tools, for understanding 

atmospheric responses to changing emissions and for formulation of mitigation policies at 

national and inter-governmental levels. They are inputs to atmospheric models operating on 

scales from a few kilometers, for studies of urban to regional air quality (Guttikunda et al., 

2005; Carmichael et al., 2009), to hundreds of kilometers, for studies of inter-hemispherical 

transport of pollutants and global climate change (Reddy and Boucher, 2007; Schultz et al., 

2006). To examine the possible role of Black Carbon (BC) aerosols on SUHII development, 

we undertake the BC emission, at 0.250 latitude spatial resolution, following earlier studies 

(Sadavarte and Venkataraman, 2014, Pandey etal., 2014). The emissions inventory data 

includes emissions of BC from residential cooking and heating with biomass fuels, lighting 

with kerosene lamps, on-road diesel vehicles, and agricultural residue burning in fields, diesel 

use in agricultural tractors, pumps and brick production in traditional kilns. 

 

2.4 Methodology  

 

The 84 big cities of India with a population larger than 1million are identified according to 

population data for year 2011 (Census India 2011). A geographical database is prepared with 

http://reverb.echo.nasa.gov/
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the root location of the city. Since administrative city boundaries differ from the actual extent, 

the cities are defined as clusters of urban land cover. The Surface Urban Heat Island Intensity 

(SUHII) is defined as the difference of land surface temperature between urban area and 

suburban area. We used City Clustering Algorithm (Rozenfeld et. al. 2008) to determine the 

urban area for each big city. We defined the suburban area as the buffer zone that is a percentage 

(50-150%) of the urban area around the urban area. A similar UHI intensity calculation has 

been conducted by Peng et al. (2012), suggesting minor influence of the boundary size, i.e., 

50%, and 100%, 150% of the cluster size. The urban pixels are defined as land covered by 

buildings and other man-made structures. The detailed algorithm for the urban and suburban 

area determination is as follows: 

1. Enqueue the pixel of the location for each big city, determined from a geographical database 

as the root node into the search queue.  

2. Dequeue a node and examine the eight neighbours around it. If the land cover type of the 

neighbouring pixel is urban land cover, add the neighbouring pixel into the queue, and assign 

attribute of the neighbouring pixel as an urban pixel, otherwise assign attribute of the 

neighbouring pixel as a non-urban pixel. 

3. If the queue is empty, every pixel in the queue has been examined – quit the 

search and return the urban map, otherwise repeat from step 2. 

4. After the urban map is returned, suburban area are defined as the buffer zone, which is a ring 

zone around urban area that consists the nonurban pixels excluding water pixels covering  the 

50-150% of land as urban area. 

Figure 2.1 shows the urban centers Surat and Vadodara of Western India land cover map. The 

urban area maps with selected suburban regions for areas are 60% and 71% of the respective 

urban areas are overlaid on the MODIS land use and LST data. As it can be observed form 

figure 2.1(b); the SUHI is apparently visible with the LST data. The land use around the two 

cities is mainly croplands and shrub lands. 
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Table 2-1 Selected Urban centers of India 

Cluster 

no 

Urban cluster   Cluster 

no 

Urban cluster   Cluster 

no 

Urban cluster   

1 Nellore 29 Jamnagar  57 Srinagar 

2 Bhagalpur 30 Aligarh 58 Meerut 

3 Shahjahanpur 31 Dehradun 59 Jamshedpur 

4 Malegaon 32 Mysore 60 Durg-bhillai 

5 Raipur 33 Tiruchirappalli 61 Jammu 

6 Kolhapur 34 Bharuch  62 Allahabad 

7 Tirunelveli 35 Rourkela 63 Coimbatore 

8 Korba 36 Kota 64 Bhopal 

9 Udaipur 37 Gorakhpur 65 Varanasi 

10 Tiruppur 38 Bokaro 66 Visakhapatnam  

11 Bhatinda 39 Amravati 67 Nagpur 

12  Mathura 40 Nanded 68 Vadodara 

13 Moradabad 41 Dhule 69 Patna 

14 Siliguri 42 Kalyan 70 Ludhiana 

15 Bareily 43 Solapur 71 Chandigarh 

16 Salem 44 Jalandhar 72 Agra 

17 Nashik 45 Ankleshwar  73 Indore 

18 Jalgaon 46 Guwahati 74 Lucknow 

19 Guntur 47 Vijayawada 75 Kanpur 

20 Ambala 48 Jodhpur 76 Surat  

21 Bhubaneshwar 49 Warangal 77 Jaipur 

22 Aurangabad  50 Gwalior 78 Pune 

23 Gulbarga 51 Amritsar 79 Indore 

24 Durgapur  52 Madurai 80 Ahmedabad 

25 Akola 53 Bhavnagar 81 Bangalore 

26 Patiala 54 Jabalpur 82 Chennai 

27 Cuttack 55 Rajkot 83 Hyderabad 

28 Ahmednagar 56 New delhi 84 Mumbai 

    85 Kolkata 
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Figure 2.1 Map of cities Surat and Vadodara 

a. MODIS data derived land cover/use, b. Mean nighttime LST 

Since LST data are based on clear-sky conditions, a coverage threshold is defined as the UHI 

intensity is regarded as valid only if the LST values are available for at least 50% of the cluster 

and boundary cells. The quality control data are supplied with each MODIS pixel, classified 

mean LST error into four levels, ≤10C, ≤ 20C, ≤ 30C and > 30C. While calculating mean 

temperatures of clusters and boundaries, the pixels with a mean LST error > 30C are first 

filtered out. For each city, we calculate the difference of urban LST minus suburban LST. 

Daytime and nighttime SUHII were calculated separately from EOS-Aqua-MODIS LST in the 

early afternoon (~13:30) and at night (~01:30), respectively. The seasonal mean daytime and 

nighttime SUHII are computed for the Indian Summer months (March-April-May) and Winter 

months (December-January-February). The spatial differences of SUHII among big cities are 

studied during the period 2003−2013. 

In parallel with daytime and nighttime SUHII, we define a vegetation parameter, an albedo 

parameters, three climate parameters, and population parameters for each big city. The 

vegetation parameters are calculated as the NDVI difference between urban and suburban 

pixels. The albedo parameters are estimated by the difference between urban and suburban 

pixels in the black sky albedo. Two more parameters WSA-linear with BSA and EVI- linear 

with NDVI are also checked, they shows similar results to BSA, so only BSA, NDVI is shown 

Vadodara 

Surat 

Vadodara 

Surat 

a b 

LS

T 
0
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here. The climate parameters over the Indian sub-continental region as well as each big city 

including mean air temperature, mean Humidity, and mean resultant wind velocities are 

extracted from ERA Interim data sets.  

 

2.5 Results and Discussion 

 

Among the 84 urban locations in India (Figure 2.2 a), 9 have population more than 5 million, 

and 34 have in the range of 1-5 million. We compute the SUHII for all these locations 

separately for Indian pre-monsoon summer (March-May) day time, summer night time, winter 

(December-February) day time and winter night time. 

2.5.1 Seasonal and Diurnal SUHII characteristics  

The figure 2.2 presents computed SUHII for Indian pre-monsoon summer (March-May) day 

time (Figure 2.2 (b)), summer night time (Figure 2.2 (c)), winter (December – February) day 

time (Figure 2.2 (d)) and winter night time (Figure 2.2 (e)). We observe majority of the urban 

locations in India, specifically in Central India and Gangetic Basin have statistically significant 

negative SUHII during summer day, which is exactly opposite to that presumed as the profound 

impact of urbanization. During summer night, the negative SUHII change their sign to positive, 

with statistical significance, at almost all locations and the UHI is prominent over the entire 

Central India. This points to strong diurnal characteristics of SUHII with mostly positive 

differences between summer night and summer day LST in the interior India; however, the 

differences are negative in many coastal cities.  

The night time winter SUHII is positive in all locations except one, but with no statistical 

significance for majority of locations. The differences between winter day and night time 

SUHII show almost similar pattern to that observed during summer.  
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Figure 2.2 Location and population of urban centers.. SUHI of Indian urban centers. 

a.Location and population of major urban centers b. Summer mean daytime SUHII c. Summer 

mean nighttime SUHII d. Difference summer night-day SUHII e. Winter mean daytime SUHII 

f. Winter mean nighttime SUHII g. Difference Winter night-day SUHII. The + sign indicates 

field significant SUHII (at 5% significance level) estimated using t-test statistics.  

2.5.2 Attribution of SUHII to background climate condition 
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Comparison of wind velocities between summer day and night (Figure 2.3 (a) and (b)) in 

coastal region reveals higher sea breeze during summer night resulting reduction in SUHII. In 

the summer time the stronger coastal wind built up is observed along the western coast 

revealing the greater air circulation and cooler night time SUHI over the cities of Kolkata, 

Vishkhapattnam, Guntur, Bhubneshwar, Nellor and Chennai. Coastal cities cool down more 

rapidly than cities lying in a valley where the influence of cooling air from surrounding rural 

areas is limited. 

 

 

Figure 2.3 Attribution of SUHII to the surface level Wind indicated by large scale circulation 

pattern derived from the ERA Interim reanalysis data 

a. Summer daytime wind overlaid with the corresponding SUHII b. Summer nighttime wind 

overlaid with the corresponding SUHII c. Winter daytime wind overlaid with the corresponding 

SUHII d. Winter nighttime wind overlaid with the corresponding SUHII  

 

The night time SUHII for both summer and winter are significantly correlated with population 

in the urban regions excluding mega-cities, probably because the patterns of population and 

built up areas are different in mega-cities compared to other urban areas. The day time SUHII 

does not have any statistically significant correlation with population ( Figure 2.4).  
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Figure 2.4 Sensitivity of day time SUHII to the population, lines are linear regression fits to 

the data, megacities are indicated with solid points. 

a. Dependence of Summer nighttime SUHII on population b. Dependence of  Winter nighttime 

SUHII on population c. Dependence of Summer nighttime SUHII on population d. Dependence 

of  Winter nighttime SUHII on population 

Here we try to bring out the reasons behind the unexpected negative summer day SUHII. We 

find that low vegetation cover during pre-monsoon summer in non-urban regions is responsible 

for such unusual characteristics of summer day SUHII. Figure 2.5(a) and (b) present the NDVI 

over Indian landmass which show very low vegetation cover during the pre-monsoon dry 

summer compared to post monsoon winter season. The differences in the NDVI between urban 

and nearby non-urban regions are presented in Figures 2.5(c) and (d) for summer and winter 

respectively. Positive to very low negative differences in the summer NDVI between urban 

and nearby non-urban regions attribute to the low vegetation cover over non-urban region 

during the same season, which is not the case for winter. Both summer and winter SUHII are 
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negatively correlated with the difference in NDVI between urban and non-urban regions and 

this proves our hypothesis that low vegetation in non-urban regions result into negative SUHII. 

Low vegetation during pre-monsoon summer season results into barren land surface which has 

lower albedo as compared to the urban build up areas24.  Figure 2.5 (g) and (h) further show 

that the variations of difference NDVI for summer and winter. They are highly negative in 

winter resulting positive SUHII during the same season. Further analysis shows that majority 

of the non-urban regions have the land use as cropland. During pre-monsoon dry period they 

turn into barren land resulting high LST. The night time SUHII does not depend on NDVI as 

albedo has minimum role to play in absence of sunlight, and we find positive SUHII.  

 

Figure 2.5 Association of SUHII in India with change in vegetation cover. 

The SUHII for summer day (a) winter day and winter day (b) are overlaid on the vegetation 

cover. The difference between vegetation cover over urban and nearby non urban region is 

estimated for the Summer (c) and Winter (d) season. The Summer and Winter daytime SUHII 

is negatively associated with difference between vegetation cover over urban and nearby non 

urban region ((e) and (f) respectively). The overall variability of difference between vegetation 

cover over urban and nearby non urban region for Summer and Winter season is estimated ((g) 

and (h) respectively). 

 

We find that the diametrically opposite seasonal patterns of SUHII between summer and winter 

day time exist in the North and Central India (Figure 2.2). Daytime land-surface temperature 

could also be influenced by atmospheric abundance of radiation absorbing constituents, like 

BC aerosols, pollution particles emitted from incomplete combustion of fuels, which strongly 
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absorb radiation over the entire solar spectrum25. Radiation absorption from BC can lead to 

heating of atmospheric layers in which these particles are abundant, at instantaneous rates up 

to several degrees °K per day26.  There is strong haze from aerosol pollution over north and 

central India27, particularly in winter months. Such aerosol induced haze, including a 

significant fraction of BC, could lead to surface radiation balance changes which affect land 

surface temperature, and consequently SUHII. To examine the possible role of BC aerosols the 

spatial plot of SUHII is overlaid on BC emission fluxes, spatially distributed on a 25 km grid, 

calculated in a recent emissions inventory for India28-29. The BC spatial distribution in winter 

reveals larger emissions in the Indo-Gangetic plain, central India and some clusters in the west 

coast (Ahmedabad-Mumbai belt), east coast and south India, corresponding to the density of 

population of users of biomass fuels.  

 

Figure 2.6 The effect of Black Carbon (BC) emission on variability of SUHII. 

The SUHII for Summer and Winter day are overlaid on the BC emission colour map ((a) and 

(b) respectively). 

The BC mediated mechanism of radiation flux changes, would only manifest during daytime. 

Thus, comparing daytime SUHI values of winter with those in summer, it is observed that 

SUHI at over 20 sites in regions with higher wintertime BC emissions is positive (red) but is 

negative (blue) at the same sites in summer. This change is co-located with increases in BC 

emissions in winter over summer, indicating urban land-surface temperatures exceeding those 

in adjoining areas in the winter months, while being reduced in summer months. Further, at 

about 10 more sites, in northwest and central India, the negative SUHI value is seen to be 
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reduced (smaller blue circle) in winter, compared to that in summer, once again indicating 

increase in urban land-surface temperatures compared to those in adjoining areas in the winter 

months. Correlation analysis of point SUHII with BC emission density (Gg/mon-grid), 

however, failed to show statistically significant association (Figure 2.7).  

 

Figure 2.7 Sensitivity of the daytime SUHII to Black  Carbon  (BC)  emission, lines are linear  

regression fits to the data 

a. Dependence of Summer  daytime SUHII on BC b. Dependence of Winter daytime SUHII on 

BC 

This is not unexpected, since possible change in the radiation balance would be linked to the 

atmospheric concentration of BC in the surface layer, and its vertical distribution, rather than 

to emissions. In winter months, the prevailing meteorology in north India leads to low mixed 

layer heights and poor ventilation rates30, which concentrates pollutants close to the surface. 

Thus emission distributions, like those analysed in this work, reveal a possible effect of BC 

emissions influencing SUHI. Further analysis is needed, utilising such emissions in chemical 

transport models to calculate columnar concentrations of BC, and subsequent radiative effects, 

which could influence the surface radiation balance. 

We also compute the correlation between SUHII and the overall surface air temperature in the 

regions to which the urban regions belong to. For India, we find it negative for both summer 

and winter (Figure 2.8(a)-(d) and (i)-(j)). It indicates that during high temperature spells, the 

SUHII will be less and hence, the urban heat wave characteristics of India are different from 

other regions around Globe23(Mishra et al., 2014, ERL).  
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Figure 2.8 Attribution of SUHI to the surface level air temperature (Tair) indicated by large scale 

circulation pattern derived from the ERA Interim reanalysis data 

a. Summer daytime Tair overlaid with the corresponding SUHI b. Summer nighttime Tair overlaid with 

the corresponding SUHI c. Winter daytime Tair overlaid with the corresponding SUHI  d. Winter 

nighttime Tair  overlaid with the corresponding SUHI  e. Dependence of Summer daytime SUHI on Tair 

f. Dependence of Winter daytime SUHI on Tair  

 

Figure 2.9 Attribution of SUHI to the surface level Relative Humidity (RH) indicated by large scale 

circulation pattern derived from the ERA Interim reanalysis data 

a. Summer daytime RH overlaid with the corresponding SUHI b. Summer nighttime RH overlaid with 

the corresponding SUHI c. Winter daytime RH overlaid with the corresponding SUHI  d. Winter 

nighttime RH  overlaid with the corresponding SUHI  e. Dependence of Summer daytime SUHI on RH 

f. Dependence of Winter daytime SUHI on RH  
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We again observe that the hot daytime climate also corresponds to the drier atmosphere with 

the low relative humidity. In the night time the coastal winds increases the humidity over the 

coastal belt of southern India over both eastern and western coast. The increase in humidity is 

observed to relate with the night time lower SUHII of the coastal cities. We find an overall 

correlation of 0.61 and 0.59 for the daytime SUHII and RH for the summer and winter season 

respectively. 

 

We further plot the differences in LST between the urban and non-urban regions, when the 

temperature attains seasonal maxima for both summer and winter, separately (Figure. 2.10). 

Each of the box plots presents each city for the corresponding season. We observe that during 

summer, more than 50% of urban regions, the SUHII is negative when temperature is 

maximum for that season.  

 

Figure 2.10 The estimated difference of daytime annual maximum temperature over urban and nearby 

non urban region 

For the Summer (a) and Winter (b) season reveals a higher extreme temperature occurrences over the 

nearby non-urban region in the Summer season. 
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This brings out an important conclusion that the intensities of heatwave are less for majority of 

urban regions in India, compared to nearby non-urban regions. This is not in agreement with 

our general understanding of urban climate and this is primarily due to low vegetation cover in 

non-urban regions in pre-monsoon dry summer.  In winter, the urban LST is higher than non-

urban regions.  

 

2.6 Summary 

 

Urban areas are reported to have a warmer temperaturein comparison to its surrounding rural 

areas; this phenomenon is recognized as the UHI effect. The formation of UHI has been shown 

to have a seasonal and diurnal variation, for example UHI is stronger at the nighttime than 

during the daytime1,2 and also stronger over the summer season than the winter season2,3.UHI 

is caused by an increase in population density which results in change in the physical 

characteristics of the surfaces, anthropogenic heat, and high level of pollutants that alter the 

radiative nature of the atmosphere4,5. Presently, India has the second largest urban population 

of the world and is projected to have the highest urban growth rate in the next 30 years6.Here 

we report results from the first assessment of seasonal and diurnal characteristics of SUHI over 

84 large urban centers of India. The mean daytime SUHI over the winter season (0.3 ± 0.7 °K) 

is observed higher than the daytime SUHI over the summer season(-0.06 ± 1.0 °K). A similar 

observation is made for the nighttime SUHI measuring (0.9 ± 0.4 °K) over the winter season 

that remains higher than summer season (0.6 ± 0.3 °K). The distribution of nighttime SUHI 

positively correlates with the population strength of the city however the same is not observed 

with the daytime SUHI. This suggests that factors other than anthropogenic forcing dominate 

the driving of day time SUHI. The novel SUHI seasonality observed in terms of cool SUHI 

over summer season is largely explained with the regional meteorology, vegetative condition 

and BC emission.The distribution of daytime SUHI across cities negatively correlates with the 
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air temperature, while it positively correlates with the humidity; observed by the large scale 

circulation pattern. We also find a positive correlation between daytime SUHI and vegetative 

land cover over surrounding non urban region. The investigation reveals a higher depletion of 

vegetative land cover over the surrounding non urban region than the urban region during the 

summer season. The possible change in the radiation balance is also linked to the increased 

atmospheric concentration of BC in the surface layer over the winter season. The key findings 

of the study lies in unique set of SUHI characteristics and a higher diurnal temperature range 

of the Indian urban areas. Heat-waves that are caused by the UHI effect have profound impact 

on the quality of life of the large volume of urban population of the country7. Higher LST in 

non-urban regions during summer day results into higher intensities of heatwaves compared to 

those in cities as opposed to the presumptions made in literature. These observations highlight 

the need for re-evaluation of SUHII in India before adaptation planning to heat waves or usual 

practicing to link them with intensified urban precipitation.  
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Chapter 3  : URBAN PRECIPITATION IN INDIA 

 

3.1 Introduction 

 

Numerous studies carried out over different parts of the globe show changes in the daily 

precipitation characteristics as well as the frequency of tropical cyclones under warming 

condition (Hennessy et al. 1997; Trenberth et al. 2003). Precipitation is also reported (G. A. 

Meehl 1994, Xue et al. 2004) to be affected by the feedback from land surface processes. 

Observational studies (Huff and Changnon 1972, Changnon and Westcott 2002) reveal that 

increase in urbanization also has significant impacts on extremes. Increasing observational 

evidence of significant impacts of urban land cover on precipitation is available in literature. 

Braham (1981) showed that a higher thermal instability can exist over urban regions compared 

to nearby rural areas which can affect thunderstorms Impacts of urbanization on precipitation 

were also observed in Mexico (Jauregui and Romales 1996), Atlanta (Rose et al. 2008), 

Houston (Burian and Shepherd 2005), Guangzhou (Meng et al. 2007) and Taiwan (Lin et al. 

2007). Mishra et al. (2012) analysed 100 most populous urban regions in pair with surrounding 

non–urban areas and observed a spatially mixed picture for precipitation related changes across 

the U.S., affected by urbanization. Ganeshan et al. (2013) has analysed spatial rainfall 

anomalies for several US cities; the study has observed a dominant influence of UHI on 

precipitation for both inland and coastal cities.  

While a number of studies provide observational and numerical model based evidences of the 

impacts of urbanization on the regional urban precipitation, indifferent regions around globe 

very few case studies are available on the same for India. Goswami et al. (2006) observed 

increase of extreme rainfall events over Central India, in the last 50 years. However, such 

spatially aggregate increases were not supported by field significance tests performed by Ghosh 

et al. (2009) and Krishnamurthy et al. (2009). Increasing spatial variability of extremes, as 

observed by Ghosh et al. (2012), pointed to the need of systematic examination of global versus 

regional drivers of trends in rainfall extremes over India. Vittal et al. (2013) has pointed out 

that the changes in rainfall extremes over majority of the urbanized regions in India have 

occurred after 1975, when urbanization has started intensifying.  

3.2 Motivation and Objectives 

Though a significant number of studies are available on relating urbanization to intensification 

of rainfall, still there exists considerable debate on influences of urbanization versus large scale 
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forcing on changes in extremes, and also on the pattern of changes of extremes in urban areas 

over India. This study is conceived as to analyze the changes of Indian rainfall extremes at 

different urban locations of the country and nearby non–urban regions, to test, if the changes 

are solely due to urbanization or affected by regional synoptic scale changes. We also develop 

a statistical experimental technique that identifies the changes in association between the 

synoptic scale weather pattern and rainfall at different quantile levels, due to urbanization. Two 

main objective of the current study is  

i) To check the trends of extremes of summer monsoon rainfall in urbanized India.  

ii) Using a data driven model for understanding the changes in rainfall pattern in urban and 

nonurban areas using quantile based regression. 

 

3.3 Data Used  

The study utilizes four different datasets namely Urbanization data, APHRODITE gridded 

precipitation data, Climate reanalysis data and Station based observed precipitation data. A 

brief description and specification of these datasets is as below. 

3.3.1 Urbanization dataset 

To identify the urban areas in India, census 2001 and 2011 urban population data from official 

census reports, are used (http://www.censusindia.gov.in). The boundaries of selected urban 

areas are extracted from Moderate Resolution Imaging Spectroradiometer (MODIS) data 

product MCD12C1 at spatial resolution of 500 m with the 2010 classified data (Friedl et al. 

2010).  

3.3.2 APHRODITE gridded precipitation Data 

Asian Precipitation Highly Resolved Observational Data Integration towards Evaluation of 

Water Resources (APHRODITE)), Japan is a daily gridded precipitation data set created from 

1961-2004. The rainfall product is based on data collected from dense network of daily rain 

gauge data from all across Asia including the data from sparse areas like Himalayas and 

Mountainous areas of Middle East.  The state of art of daily precipitation data is available at 

0.5oX0.5o and 0.25oX0.25o resolution. They are based on (i) GTS (Global Telecommunication 

system) data (ii) data compiled by the organizations from the respective countries like, India 

Meteorological Department (IMD) for India, and (iii) APHRODITE’s own data collection 

system, after proper quality control (Yatagai et al., 2012).  The Aphrodite body has used an 

improved interpolation scheme which gives proper weightage to local topographical features 

to improve the orographic precipitation (Yatagai et al 2009).  The APHRODITE data is derived 

http://www.censusindia.gov.in/
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not by direct interpolation of station data but by interpolating the ratio of the daily precipitation 

to the daily climatology (Yatagai et al 2012). The gridded ratio is then multiplied by gridded 

climatology for each day to obtain gridded daily precipitation. The website address 

http://chikyu.ac.jp/precip. The data set is over 40 years so that it can be used for evaluating the 

long term water resources of Asian region. For the present analysis, we consider, the gridded 

daily precipitation data, compiled by the Asian Precipitation–Highly Resolved Observational 

Data Integration Towards Evaluation of the Water Resources (APHRODITE) version 

APHRO_V1003R1, for the period 1951- 2007, at a resolution of 0.25°×0.25° (Yatagai et al. 

2009).  

3.3.3 Observed Precipitation data.  

Daily precipitation data of stations, Mumbai (Station name: Snatacruz) and Alibaug from 

January 1969 to December 2008 is obtained from the IMD. The meteorological stations 

Santacruz and Alibaug are situated at elevations of 14 m and 7 m respectively. The difference 

of elevation is 7 m, which is too small to have impacts on the differences in rainfall patterns 

between these stations. The quality control of the station data has been performed by India 

Meteorological Department.   

3.3.4 Climate Reanalysis data 

Reanalysis data is surrogate for observed data for any predictor variable. The NCEP-NCAR Reanalysis 

data set is a continually updating gridded data set representing the state of the Earth's atmosphere, 

incorporating observations and numerical weather prediction (NWP) model output dating back to 1948. 

It is a joint product from the National Centers for Environmental Prediction (NCEP) and the National 

Center for Atmospheric Research (NCAR), NOAA. The NCEP/NCAR reanalysis-I data (Kalnay et al., 

1996) provide global atmospheric data which is a mixture of physical observations and model forecasts 

using different data assimilated systems such as global rawinsonde data, aircraft data, satellite data, and 

surface land synoptic data, advanced microwave surface wind speed data etc. to at 28 vertical sigma 

levels to calculate the reanalysis data products for various climate variables.  

The atmospheric circulation patterns of western coast are obtained from the NCEP/NCAR 

reanalysis project. Gridded data for six predictors used in regression model formulation are 

obtained at 2.5°latitude×2.5°longitude spatial resolution for time period 1969 to 2008. The 

variables; namely atmospheric pressure, air temperature, relative humidity and vertical wind 

field, as well as 500 HPa pressure level eastward and northward wind field are obtained. The 

pressure level of 500 HPa is selected, considering it as the representative level for mean steering 

flow of convective storms (Hagemeyer 1991). The areal extent of parameters is delimited 

by10°–30°N in latitude and 60°–80°E in longitude. This region of predictors span is selected 
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to account for physical processes over large part of the Arabian Sea and Indian sub continental 

land, towards summer monsoon activity around selected metrological stations. Rainfall in both 

coastal stations Mumbai and Alibaug is essentially caused by the moisture flux coming from 

Arabian Sea. Hence, we have selected the predictor region slightly biased to the Arabian Sea.  

3.4 Impacts of Urbanization on Regional Trends of ISMR   

 

With its size and meteorological non–homogeneity, for analyzing ISMR characteristics, we 

consider seven meteorologically homogeneous zones of India (figure 3.1), as identified by the 

IMD (Parthasarathy et al. 1996). 42 urban areas, identified for the analysis are given in Table 

3.1.  

 

 

Figure 3.1 Urban locations (a) and meteorologically homogeneous regions (b) in India. 

To analyse the characteristics of regional Indian Summer Monsoon Rainfall, the indices: mean 

rainfall, maximum 1–day precipitation, maximum 5–day precipitation, occurrences of heavy 

precipitation and ratio of heavy to non heavy precipitation (Caesar et al., 2006; Mishra et al., 

2010; Hertig et al. 2013) are derived from gridded daily precipitation data. Annual time series 

of selected indices and mean precipitation are derived for all the grid points over entire India. 

Long term trends are estimated and tested at 5% field significance level of the indices are 

estimated with non parametric Mann Kendall rank statistics (Mann, 1945; Kendall, 1975). 

Magnitude of trends are estimated using Sen’s slope estimator (Sen 1968). Figure 3.2 provides 

the spatial distribution of the trends for the above mentioned indices, where the null hypothesis 

of no–monotonic trend is rejected at the 5% significance level for the time period 1951-2007. 

To understand the influence of urbanization on the characteristics of precipitation, an urban 

http://www.sciencedirect.com/science/article/pii/S0022169401005947#BIB25
http://www.sciencedirect.com/science/article/pii/S0022169401005947#BIB17
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influence region is then selected by constructing buffer regions of 100–km radius around each 

urban area. 

Table 3-1 List of selected urban areas of India 

 

Sr. 

No. Name of urban agglomeration 

Sr. 

No. Name of urban agglomeration 

1 Agra 22 Kochi 

2 Ahmedabad 23 Kolkata 

3 Allahbad 24 Lucknow 

4 Amritsar 25 Ludhiyana 

5 Asansol 26 Madurai 

6 Banglore 27 Meruth 

7 Bhopal 28 Mumbai 

8 Bhubneshwar 29 Nagpur 

9 Chandigarh 30 Nashik 

10 Channai 31 Patna 

11 Coimbtore 32 Pune 

12 Delhi 33 Raipur 

13 Dhanbad 34 Rajkot 

14 Guahati 35 Ranchi 

15 Haydrabad 36 Srinagar 

16 Imphal 37 Surat 

17 Indore 38 Thiruvananthapuram 

18 Jabalpur 39 Vadodara 

19 Jaipur 40 Varanasi 

20 Jamshedpur 41 Vijaywada 

21 Kanpur 42 Vishakhapattnam 

 

 

Figure 3.3 provides the summary of the findings in terms of percentage to investigate and 

present the urbanization impacts on rainfall at different climatologically homogeneous zones. 

Here, we compute the percentage of grid points that belong the urban buffer region in a zone 

(dotted line in each panel of figure 3.3), and the percentage of grid points showing increasing 
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and decreasing trend (bar diagram in figure 3.3). The results clearly indicate that the impacts 

of urbanization on precipitation are different in different regions and it largely depends on 

geographic locations.  

 

Figure 3.2 Trend of rainfall characteristics in India at 5% significance level. 

The characteristics considered here are (a) mean monsoon (b) annual maxima (c) intensity of 

5 most extreme events (d) occurrence over 95th percentile (e) heavy to non–heavy precipitation 

ratio. Locations of the centre of urban regions are marked with red dots and are bounded by a 

circle of radius 100 km, indicating the urban region. The interim lines indicate boundaries of 

climatically homogeneous zones of the country. Trend magnitudes estimated using the 

Senslope estimator. 

The dotted line in each panel of Figure. 3.3, represent the urban fraction in a zone/ country. 

The bars in each plot show the urban percentage among the grid points having increasing and 

decreasing trend of rainfall characteristics. Urban signatures on intensification of extremes are 

prominent in western and central zone. 
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Figure 3.3 Urban percentage among the grid points having increasing and decreasing trend of rainfall 

characteristics. 

Growth of urbanization has not been constant during post 1951 period and has intensified after 

1975 (Vittal et al., 2014). To understand the association of trends of extremes with the growing 

rate of urbanization, we divide the period of data availability, into two halves. The second half, 

i.e., the period 1979-2007 is considered to have higher rate of urbanization as compared to 

years 1951-1978. Figure 3.4 provides the spatial distribution of the trends for the selected five 

indices during the two periods separately. Overall the trends of extreme indices are found to be 

higher during 1979-2007 than those during 1951-1978. Figure 3.5 provides the summary of the 

findings in terms of percentage to examine the impacts of urbanization growth on rainfall at 

different climatologically homogeneous zones, which is similar to figure 3.3.  
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Figure 3.4 Trend of rainfall characteristics in India at 5% significance level for the time period 1951-

1978 (Panel 1) and 1979 – 2007  (Panel 2). 

(a)(b) mean monsoon (c)(d) annual maxima (e)(f) intensity of 5 most extreme events (g)(h) occurrence 

over 95th percentile (i)(j) heavy to non–heavy precipitation ratio.  Same as figure 3.2.  
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Figure 3.5 Urban percentage among the grid points having increasing and decreasing trend of rainfall 

characteristics for the time period 1951-1978  and 1979 – 2007.Same as figure 3.3 

We observe that urbanization signature on increasing trend of rainfall extremes is not 

prominent during 1951-1978, but it is distinctly visible during the later period 1979-2007, when 

the growth of urbanization is high. Central and Western zone show maximum impacts of 

urbanization in terms of increasing trend of extremes for almost all the indices (figure 3.5 e, h). 

To understand the mechanism of intensification of extremes by urbanization, here we take a 

specific urban case study of most populated coastal city in India, Mumbai its surrounding non–

urban area Alibaug located in Central zone and very close to Western zone, where the urban 

signature on intensified rainfall is prominent. The details are presented in the following section. 
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3.3 Urbanization Impacts on Rainfall Extremes over Mumbai 

 

A statistical relationship is established between NCEP variables and precipitation with a 

specific emphasis to model extreme rainfall, i.e., the rainfall with higher quantile. We perform 

the regression analysis with 99, 95, 90, 85 and 80 quantiles of precipitation for both Mumbai 

and Alibaug. The methodology is presented in figure 3.6.  

Six climate variables, at 81 grid points, result in high dimensionality, which is reduced with 

Principal Component Analysis (PCA). First we attempt to understand the large scale circulation 

types (classes), over western coast during monsoon using unsupervised classification 

technique, k–means clustering (McQueen 1967). Predictor data is divided into four groups with 

respective cluster ID. The climate variables corresponding to the four cluster centroids are 

presented in figure 3.7. Differences are observed between the cluster centroids for all the 

variables that show the importance of classification to understand the existence of multiple 

circulation patterns. The lower mean wind velocity over cluster1 (figure 3.9) is indicative of 

favourable weather condition for development of UHI (Szegedi and Kircsi 2003, Blazejczyk et 

al. 2006). At the same time high pressure region over land for cluster1 suggestive of a 

favourable condition for UHI impacts (Morris and Simmonds 2000). 

 

 

Figure 3.6 Methodology flow diagram 

Data preparation (a) and Quantile regression approach (b). 
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The rainfall distributions of Mumbai and Alibaug, corresponding to the clusters of circulation 

patterns/types, are presented in figure 3.8.  We divide the data for availability period, 1969–

2008, in two equal halves. The second half, i.e., years 1989–2008 is considered to be more 

urbanized as compared to years 1969-1988.  The distribution of circulation classes in both the 

periods show maximum changes in cluster 1, with a decrease of 4% from 1969–1988 to 1989–

2008 (figure 3.7). However, most of the extreme metrics show increasing trend near Mumbai 

(figure 3.4), and such observation necessitates a detailed analysis to understand the changes in 

high quantile rainfalls corresponding to the same circulation pattern.  

 

Figure 3.7  Distribution of circulation patterns during the periods 1969–88 and 1989–2008. 

 

Figure 3.8 Rainfall distribution in Mumbai and Alibaug 

As quartile regression is specifically designed for higher quantiles (which are supposed to have 

low sample size) and has been used in literature (Friederichs and Hense 2007) for extreme 

downscaling, we use the same for this purpose. Quantile Verification (QV) score, proposed by 

Gneiting and Raftery (2005) is used for validation of QR. Figure 3.10 provides skill scores of 
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proposed censored QR model (CQVSSτ) with, linear regression model outputs as reference. The 

results show an improved model performance for higher quantiles. 

 

 

 

Figure 3.9 Centroids of each cluster/ circulation pattern for different climate variables. 



47 

 

The quantile values estimated for all the circulation patterns, and both time periods for Mumbai 

and Alibaug are given in figure 3.11.  

We observe that for cluster 1 (which is associated with extremes) in Mumbai, the circulation 

pattern in post urbanization period results into high rainfall quantiles as compared to those of 

pre–urbanization period.  

 

Figure 3.10 Quantile regression model performance 

CQVSS for Mumbai and Alibaug, corresponding to different circulation patterns, during 

periods 1969–88 and 1989–2008. 
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Figure 3.11 Rainfall quantiles in Mumbai and Alibaug, 

The quantile values estimated corresponding to different circulation patterns, for periods 1969–

88 and 1989–2008. 

The same is not observed for non–urbanized area Alibaug. This indicates the possibility of 

changing relationship between the extreme precipitation of Mumbai and atmospheric 

circulation pattern, resulting higher rainfall quantiles in post urbanization period. 

 

3.4 Summary 

 

This work demonstrates an overall picture of the impacts of urbanization on Indian summer 

monsoon rainfall extremes. The key finding lies in understanding the non–uniformity of these 

impacts on extreme rainfall across the country. We observe such non–uniformity mainly result 

from the zonal trends, the dominances of which, over local changes, are different in different 

regions. To investigate more, with station level rain–gauge data, here we develop a new data 

driven experiment technique for understanding the impacts of urbanization on extreme rainfall. 

The novelty of the present approach is that this is computationally inexpensive, as well as, 

capable of understanding impacts of urbanization on extremes. The computational time 

required for statistical data driven modelling is less as compared to dynamic analysis with WRF 
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for all extreme events from 1969-2008. The results distinctly show that urbanization has 

intensified the extreme rainfall in Mumbai, which is not visible in Alibaug. Our results 

highlight that urbanization affects the relationship between the large scale circulation and 

rainfall extremes, and hence calibrating a rainfall model for urban area with past data may not 

guarantee good simulations for future. The limitation of the model is that, quantile regression 

is still a black box model and hence it cannot identify the physical mechanisms, which are 

affected by urbanization and are responsible for changing the patterns of rainfall extremes. This 

needs follow on research activities in understanding the fingerprints of extremes (Nayak and 

Ghosh, 2012) and then identifying the changes in the fingerprints at local scale during extremes 

for pre and post urbanization periods. This may be considered as the potential area of future 

research. The increasing trend of extreme rainfall and population at the same time over the 

metropolitan of Mumbai highlights that development and improvement of real-time flood 

forecasting systems is a very topical for the urban centre of Mumbai. The effectiveness of early 

warning systems for reducing the damages and casualties induced by floods is widely 

recognized.  
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Chapter 4  : EXTREME RAINFALL FORECASTS IN MUMBAI WITH 

WEATHER PATTERN RECOGNITION 

4.1 Introduction 
 

Extreme rainfall is one of the most difficult elements of the hydrologic cycle to forecast because 

of the high variability in space and time and the complex physical process. Occurrences of 

rainfall extremes are expected to increase in changing climate (Goswami et al. 2006; IPCC 

2012), and hence, proper scientific understanding of extremes is crucial. Though there are 

significant research advancements in the last two decades in the science of extremes (Cavazos 

et al. 2008; IPCC 2012; Wheater 2002; Young 2002) to minimize the impacts, hazards, and 

losses. Early prediction-based alert broadcasting may help in operating the existing flood 

control systems with maximum efficiency, which minimizes losses, such as evacuation, flow 

diversion, alerting the population, preparedness of the disaster mitigation team, etc.  A warning 

system may alert the population for making their own arrangements to safeguard their lives 

and their properties. People under attack will be relocated well before the advancement of the 

flood. In addition, early warning may enable the preparation of international assistance actions 

(Pappenberger et al. 2008). An effective rainfall forecasts have great potential to improve 

planning and management of water resources and agriculture (Everingham et al., 2008). It is 

of a paramount importance as it serves the role of key input in formulating modus operandi for 

immediate future. Short range rainfall forecasts influence a wide range of entities, right from 

agricultural industry to a common man. The disastrous flood of Mumbai, in 2005, is one such 

example (Rajendra et al. 2006). For an urban centre like Mumbai housing metropolitan 

population of 20.7Million (Census 2011) an accurate forecasts may help in minimizing the 

possible damage by implementing pre-decided plan of action.  

At the same time weather forecast has always been a challenging research problem.  Extreme 

rainfalls are expected to be associated with exceptional atmospheric conditions. They are of 

short duration and are the consequence of convective instabilities in moist air in small spatial 

location (Goswami et al. 2006). To obtain more effective forecasts of extreme rainfall, novel 

models with better ability are desired. 



51 

 

Many climate modeling centers around the world now routinely produce long lead global 

rainfall forecasts from coupled ocean-atmosphere general circulation models (GCMs). 

Numerical weather prediction uses mathematical models of the atmosphere and oceans 

processes to predict the weather for near future based on current weather conditions. 

Mathematical models can be used to generate weather forecasts (short-term) or climate 

predictions (long term). Numerical prediction efficiency is affected by density and quality of 

observation input and deficiency in the numerical model. To enumerate the large amount of 

inherent uncertainty remaining in numerical predictions, ensemble forecasts have been used to 

gauge the confidence in the forecast, and to obtain useful results (Wei and Toth, 2003). This 

approach analyzes multiple forecasts created with an individual forecast model or multiple 

models. 

The Global Forecast System (GFS) is a weather forecast model produced by the National 

Centers for Environmental Prediction (NCEP). The atmospheric and land-soil variables 

available from GFS data range from temperatures, winds, and precipitation to soil moisture and 

atmospheric ozone concentration. The GFS model is a coupled model, composed of four 

separate models (an atmosphere model, an ocean model, a land/soil model, and a sea ice 

model), which work together to provide an accurate picture of weather conditions. The output 

from the GFS is also used to produce model output statistics.GFS dataset is available at a 

resolution of (0.5°x0.5°). This dataset is used to predict weather out to 16 days in the future 

(source:http://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-

system-gfs).   

It is also necessary to gauge the quality of forecasts which might vary with the complexity of 

weather state and regional parameters associated with Indian Summer Monsoon Rainfall 

(ISMR) for the amount of damage it can cause (because of poor forecasts) to the economy. 

Among the most crucial scientific interests the assessment of the forecast uncertainty also plays 

a major role.  The two usual sources of uncertainty in forecast models: (1) the errors introduced 

by the use of imperfect initial conditions, and (2) errors introduced because of imperfections in 

the model formulation, such as the approximate mathematical methods to solve the equations 

(Wei and Toth, 2003). Multiple model simulations are conducted to account for this 

uncertainty. Ideally, the verified future dynamical system state should fall within the predicted 

ensemble spread, and the amount of spread should be related to the uncertainty (error) of the 

forecast.  
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Downscaling is the method to convert coarse resolution data to a finer resolution data. It  can 

be broadly divided into two categories: statistical and dynamic downscaling. In dynamic 

downscaling, output of the GCM is used to drive regional, numerical model in higher spatial 

resolution, which is able to simulate local condition in a better way. In statistical downscaling, 

a statistical relationship is established between large scale climate predictors like surface 

pressure, temperature and local scale predictand like rainfall. Extreme rainfall forecasting plays 

an essential role in flood disaster warning systems. To obtain more effective forecasts of 

extreme rainfall, the development of better models has always been recognized as an important 

task. The NCMRWF produced rainfall forecasts for the country of India at 50 and 35 km spatial 

resolution based on physics-based models are found to be poor in simulating extreme rainfall 

in India (Khaladkar et al., 2007). One possible reason may be because Indian regions are non- 

homogeneous with respect to the land–ocean interaction, terrain distribution, and prevailing 

weather systems. This aspect of non-homogeneity in Indian regions makes it important to take 

into account the mesoscale conditions of the atmosphere, along with synoptic scale 

circulations, for the prediction heavy rainfall events. An attractive alternative to the physically 

based models is statistical models that work on the basis of information processing system with 

great flexibility in modelling nonlinear processes.  

The selection of predictors directly affects rainfall processes are used as input variables in 

statistical downscaling procedure. The selection of predictor variables is important for the 

accuracy of model performance. Wilby (1999) described three basic rules for selection of the 

predictor variable: (1) the data for the particular predictor should be available for the desired 

period, (2) the selected variable should be well simulated by the model, and (3) the predictor 

should show a good correlation with the predictand. Numerous studies across the literature 

studies demonstrate the dependence of predictor selection over the performance of model 

(Hewitson and Crane 1996, Charles et al., 1999). For the current study, we use reanalysis data 

of ten climatic variables that signify state of atmosphere in predicting extreme rainfall over the 

station. The climatic parameters namely geopotential height, relative humidity, air temperature, 

eastward wind field (UWind), northward wind field (VWind) at the pressure level 1000 hPa 

and 500 hPa as well as surface level atmospheric pressure are selected as the predictor 

variables. The 500 hPa level is chosen as a representative level for mean steering flow for 

convective storms (Hagemeyer 1991).  
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4.2 Motivation and Objective 

 

The weather forecast obtained with the Global Ensemble Forecasting System (GEFS) 16 day 

provides weather forecast of precipitation at resolution of 1° x 1°. This is not sufficient for finer 

resolution precipitation and flood forecasting for an urban region. The statistical properties, 

mean, standard deviation, correlation coefficient and extreme parameters of GEFS gridded 

precipitation data corresponding to the Mumbai urban grid is checked with the observed daily 

rainfall of station Santacruz of Mumbai.  

The present study aims working out a statistical downscaling based numerical weather 

prediction model for the urban centre of Mumbai to improve GEFS rainfall forecast. Despite 

the fact that myriad previous studies have addressed the precipitation forecasting, the research 

has addressing the one important attribute of the rainfall i.e. the day when certain amount of 

rain is received; and its relation to the climatic circulation pattern is not taken up especially in 

context of urbanization development.  

 

4.3 Study area 

 

Mumbai city was chosen as the study area considering its rapid urbanization in the past two 

decades. Mumbai is situated at the mouth of the Ulhas River on the western coast of India. The 

city has a tropical climate, with seven months of dryness and peak of rains in July. The cooler 

season from December to February is followed by the summer season from March to June. 

Mumbai is the largest metropolitan region in India. Since the economic reform in 1978, this 

city has been experienced significant economic and population growth, owing to the economic 

radiation, high technology layout and favorable investment policies. It is the financial and 

commercial capital of the country as it generates 6.16% of the total GDP. Concomitant with 

significant economic development, the city has witnessed an extensive urbanization process 

and significant amount of land has been displaced by commercial, industrial, residential areas 

and redevelop idle areas. The Mumbai metropolitan region covers an area extent of about 1,500 

km2.  

 

http://en.wikipedia.org/wiki/Ulhas_River
http://en.wikipedia.org/wiki/Tropical_climate
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4.4 Data used  

 

The training and testing of forecast model is carried out with a ground based dataset of annual 

precipitation at daily time period for meteorological station of Santacruz (Mumbai). The 

precipitation data is obtained for the time period 1979-2007 from IMD. The quality controlled 

rainfall data is extracted for southwest summer monsoon months; June-July-August-September 

(JJAS) from the annual time series. 

The two important datasets namely the ERA interim reanalysis data and GEFS data sets used 

for statistical model formulation forecast generation. 

4.4.1 Climate reanalysis data 

Era-interim reanalysis data is used for predictors and daily observed rainfall of the station 

Santacruz is used as predictant. The selected climatic variables are obtained from the ERA 

Interim reanalysis dataset provided by European Centre for Medium-range Weather Forecasts 

(ECMWF) (Dee et al., 2011). The areal extent of parameters is delimited by latitudes 10°-30°N 

and longitudes 60°-80°E to account for physical processes, over the Indian subcontinent and 

Arabian ocean towards Indian summer monsoon activity around selected metrological station. 

The data is available on a 1° latitude 1° longitude grid. The baseline period considered in this 

study is from 1979 to 2007 (29years) based on the availability of the rainfall and reanalysis 

data. This duration is sufficient to establish a reliable climatology and is used for training and 

validating the proposed statistical model.  The predictors used for the present study are 

temperature (surface level and 500hPa), pressure at surface level, wind velocities (u-wind and 

v-wind at 500hPa and 1000hPa), specific humidity (500hPa and 1000hPa), and geo-potential 

height at 500hPa. Figure 5.1 shows spatial extent of ERA-Interim reanalysis grid points (total 

441 points, 21 × 21) over the map of India along with location of stations Santacruz (Mumbai).    

4.4.2 Numerical Weather Forecast Data 

Ensemble forecasting is a numerical prediction method that is used to attempt to generate a 

representative sample of the possible future states of a dynamical system. The Global Ensemble 

Forecast System (GEFS) is a weather forecast model made up of 21 ensemble members 

(Hammil et al., 2013). GEFS is initiated by NCEP to address the nature of uncertainty in 

weather observations, which are used to initialize weather forecast models (source: 
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http://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-ensemble-forecast-

system-gefs). The second generation reforecast dataset of GEFS data consists of an 11-member 

ensemble of forecast. This dataset is available from December 1984 to present day. The 

operational medium-range GEFS data is available every 3-hourly intervals from 0 to 72 h and 

every 6 h thereafter. The data is procured from the global forecast fields available at 1° latitude 

1° longitude resolution for the selected climate variables and areal extent. This resolution is 

reasonable for global model, but it is not able to capture fine resolution processes associated 

with precipitation. Hence, it does not give accurate information related to precipitation. For 

fine resolution rainfall, statistical downscaling is performed using large scale predictors. 

The second generation reforecast dataset of GEFS data consists of an 11 member ensemble 

with 10 perturbed forecast members and the one control forecast.  The forecasting is achieved 

by applying the tested regression model to the output from the NWF NCEP/GEFS datasets. 

The data for 1984-2007 (23 years) is used to validate the forecast model.  

 

Figure 4.1 Location of Mumbai and spatial extent of predictors selected. 

ERA interim grids overlaid on map of India. 

4.5  Methodology 

http://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-ensemble-forecast-system-gefs
http://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-ensemble-forecast-system-gefs
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In this study, we refer to the extreme precipitation as those events observed at the tail of 

frequency distribution functions. Extreme event is considered when the daily precipitation 

exceeds 95th percentile of the time series. The overview of proposed methodological procedure 

used in this study for accessing quantile forecast values for extreme precipitation from a 

climatic circulation pattern is stepwise summarized in Figure 4.2. The three basic steps for 

formulation of regression data sets are as follows : (i) normalisation of the datasets; (ii) 

applying the dimensionality reduction technique (iii) bias correction. Quantile based regression 

is used to find relation between southwest monsoon precipitation over the station and climatic 

circulation pattern. The rainfall data available for 1979-2007 (29 years) is divided into two 

halves for model training and validation purpose. The first half of precipitation dataset 1979-

1993 (15 years) is referred as the training period and the rear half of dataset 1994-2008(14 

years) is referred as the validation period. 

 

Figure 4.2 Statistical Downscaling Methodology 

a. Flowchart for statistical downscaling model for extreme rainfall forecasting enlisting 

various mathematical operations that are performed on predictors (GEFS simulated 

climate variables) and predictand (rainfall) which take part in statistical downscaling as 

inputs.  

b. Two step censored quantile regression model (Friederichs and Hense, 2006).  

4.5.1 Forecast model formulation  

b

. 

a

. 



57 

 

The first step of the normalization of datasets takes care of adjusting values of selected 

predictor variables to a common scale. The normalization of data is essential, as the selected 

climatic variables are measured on significantly different characteristic scales and different 

dimensions. Selected 10 variables at 441 grid points around the station Santacruz(Mumbai) 

make a sum of 4410 variables to be utilised as predictors for regression analysis. However 

employing all these variables for regression analysis firstly poses the difficulty of multi-

dimensionality. Secondly as the climatic variables are largely dependent on each other hence 

highly correlated pose the problem of multi-collinearity. Use of high-dimensional correlated 

data is computationally expensive and also leads to an increase in the degree of sparseness in 

data that may impact outputs where a statistical significance is required. On the other hand, if 

the dimensions are reduced without considering the internal data pattern and its variability, it 

hampers the accuracy of the model output. PCA is the powerful and most widely used 

multivariate statistical technique, for identifying patterns in multidimensional data set 

containing a large number of variables and reducing the number of dimensions to a data set 

containing fewer new variables representing a large fraction of the variability contained in the 

original data to the best possible extent. For the current study, PCA is used to obtain principal 

components (EOFs) acting as predictors to establish a statistical relationship of observed 

rainfall with the large scale circulation pattern. Preisendorfer (1988) investigated various 

principal component selection rules, with this study we have used Kaiser’s rule adopted by 

Jolliffe (1972) to retain the principal components accounting for more than the average amount 

of the total variance present in the dataset. The standardized predictor containing 4410 

variables (10 climate variables at 441 grid points) are reduced without discarding important 

information carried in the original data. It is also essential to preserve the eigen vectors obtained 

during PCA of the ERA-Interim data to obtain the principal components of validation time 

period as well as bias corrected GEFS data. We carried out different experiments retaining the 

predictors representing 98-60 percent of variability present in the set of complete predictor 

dataset. An additional experiment of conducing PCA over individual predictors is undertaken. 

We also apply an additional dimensionality reduction methodology Least Absolute Shrinkage 

and Selection Operator (LASSO). The method developed by Tibshirani (1996) selects variables 

on the basis of their effect on the response and reduces number of variables with a constraint 

of sum of absolute value of coefficients less than a constant. A detail description of LASSO is 

referred to the supplementary information. The list of experiments and the number of EOF 

retained with each experiment to be used as predictor variable is referred to Table 4.1. 

4.5.2 Bias correction  
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An ideal conditions (zero bias) is GCM-simulated data be exactly the same as that of the 

reanalysis data. The ensemble mean from all the raw GEFS forecast data shows a systematic 

difference with the observed climate variables. This systematic deviation, known as bias, is 

firstly removed to obtain correct rainfall forecast. Standardization (Wilby et al., 2004) of GEFS 

predictor data is carried out prior to statistical downscaling to remove systematic biases in the 

means and variances of GEFS predictors relative to the observations or the ERA-Interim data. 

The procedure typically involves a subtraction of the mean and division by the standard 

deviation of the predictor variable over a predefined baseline period. The standardization of 

GEFS predictor data is carried out with the mean and standard deviation of ERA-Interim data 

predictor data of the same duration. The bias-corrected GEFS data is shown in Figure 4.3. 

 

 

Figure 4.3 Bias correction methodology (standardization) applied to GEFS-simulated 

predictors.  

Application of the method is demonstrated with u-wind. Uncorrected GEFS simulations 1000h 

Pa u-wind for 1985–2007, monsoon mean(a) and standard deviation(d) fail to capture the 

spatial distribution as observed with mean(b) and standard deviation(e). However, the bias 
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corrected simulations capture spatial variation both in terms of mean(c) and standard deviation 

(f).  

 

Figure 4.4 Skill score for GEFS forecast at lead time 1 and 3 days 

Censored Quantile Verification Skill Score (CQVSS) against the quantiles (0.8 ,0.85, 0.9, 0.95, 

0.99) (a), The shading indicates GEFS perturbations. Probability of Detection(PD), False 

Alarms(FA) Ratio and Heidke Skill Score(HSS), of extreme rainfall (at 95th percentile) 

corresponding to day 1 and day 3 forecast. The forecast skill reduces with lead time.  

4.5.3 The three step censored quantile regression model 

The conditional quantile model is trained on selected EOFs of the ERA Interim reanalysis data, 

and it is then applied to NCEP high-resolution GEFS 12-h forecasts. We use an estimate of 

conditional quantile coefficients using the subsample of data. Standard Quantile Regression 

module provided by R. Gilchrist (2001, p.1) describes a quantile as ‘the value that corresponds 

to a specified proportion of an ordered sample of a population’. A clear definition of Quantile 

may be given as: the points taken at regular intervals in the cumulative distribution function of 
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a random variable. Introduced by Koenkar and Basset in 1978, quantile regression is an 

extension of the linear regression model. It is used to estimate quantiles of a response variable 

distribution conditional on a given set of predictors using a linear model. It provides a more 

complete statistical view than the classical expectation value regression. With quantile 

regression models the relationship between predictor variables and specific percentiles or 

quantiles of the response variable is established (Koenker 2005). We adopt the three step 

procedure proposed by Chernozhukov and Hong (2002) for estimation of quantile values. 

Friederichs and Hense (2007) used the same approach for statistical downscaling for extremes. 

In the first step conditional probability of the occurrence of precipitation  π = prob(Y>0/X) is 

estimated using a generalized linear model (GLM) with a logit function (Fahrmeir and Tutz 

1994). The estimated probability of precipitation denoted as 𝜋̂ indicates probability of not 

censoring. Based on this estimate, a subsample J0 is chosen with J0 = {i:𝜋̂i = prob(Y> 0/xi) >1- 

τ}. Using the subsample J0 an initial estimate of quantile coefficients βτ is calculated in second 

step.. The quantile regression is performed using the R open source statistical computer 

program (R Development Core Team 2003) and the R quantreg-package of Roger Koenker. 

An updated subsample with J1 = {i: 𝛽̂𝜏
𝑇xi >0} is selected. Finally with third step an estimate of 

the three-step estimator 𝛽̂𝜏 of the censored QR is calculated based on the updated subsample J1 

again using standard QR. An optional step four repeats the update of the subsample based on 

the three-step estimator 𝛽̂𝜏 with J2 = {i: 𝛽̂𝜏
𝑇xi >0} and updates the estimate 𝛽̂𝜏.  

 

4.5.4 Quantile Forecast verification 

The goal of verification is to access the performance of quantile regression model along with 

defining adequate summary measures or scoring rules for valuation of a resultant compared 

with a reference. Gneiting and Raftery (2005) proposed a proper scoring rule for valuation of 

a result compared with a reference by using the (censored) LAD function that directly applies 

to estimate conditional quantiles of a censored resultant variable. In order to assess the relative 

gain in performance with respect to a reference, a censored quantile verification skill score 

(CQVSS) is derived for a specific τ quantile. CQVSS is analogously to the Brier skill score 

derived for one category as: 

CQVSS(τ) = 1−CQV(τ)/CQVref(τ) 

The CQVS is a positive definite function that can takes values on an interval (−∞,1). Its 

expected minimum is obtained if the resultant corresponds to conditional τ-quantile and the 

expectation is zero if regression resultant is perfect therefore if underlying process 
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deterministic indicating no gain with respect to reference forecast, while value of one indicates 

a perfect and deterministic forecast. Murphy (1973) states that the CQVSS as well as Brier skill 

score are only asymptotically proper for very large samples. 

Along with the CQVSS, we also adopt the quality measures relating to the prediction the 

amount of precipitation based on the contingency table of forecast against observations of 

precipitation. We use the widely accepted Relative Operating Characteristic (ROC) tool for 

probabilistic weather forecast verification. The ROC has been used for decades in engineering, 

biomedical, and psychological applications. The ROC measures the hit rate of a forecast against 

its false-alarm rate as the decision threshold (quantile of a probabilistic forecast) is varied. For 

ensembles, the ROC is a curve that indicates the relationship between hit rate and false alarm 

rate as different sorted ensemble members are used as decision thresholds. As per the 

conventional method of calculation the 2×2 contingency tables are generated, with separate 

contingency tables tallied for each sorted ensemble member.  

We deduce the Probability of Detection (PD), and the False Alarm (FA) corresponding the 

extreme events exceeding the 95th percentile over the testing time period. PD is calculated as 

the number of true forecast divided by the total number of events. Similarly, FA is calculated 

as the number of false positives divided by the number of non-events. Range of PD is zero to 

one, with a perfect score 1 and no skill at zero. PD is sensitive to hits but does not take into 

account of false alarms. While maximizing the number of hits and minimizing the number of 

false alarms is desirable, it is required that PD be examined together with FA. FA has a negative 

orientation, range of FA is also one to zero, with a perfect score zero. We also compute the 

Heidke Skill Schore (HSS) for the model forecast. The HSS is one of the most commonly used 

skill score that standardizes the number of correct hits and rejections to eliminate forecasts 

which would be correct due to random chance (Heidke 1926). Range of HSS is minus infinity 

to one, a perfect score 1, no skill forecast 0. In this context we explore the potential of using a 

downscaling model to produce short lead (day 1 and day 3) forecasts of extreme rainfall for the 

urban region of Mumbai. 

 

4.6 Results and discussion 

 

We first examine potential forecast skills of the raw GEFS forecasted rainfall over the grid 

including the city of Mumbai. Figure 4.5 presents the rainfall climatology, mean standard 

deviation and extremes as observed for the station Santacruz (Mumbai) and the same from the 
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GEFS ensemble precipitation forecast. A comparison clearly reveals that the GEFS ensemble 

precipitation forecast considerable underestimates the observed precipitation in terms of all the 

three selected parameters. These facts elaborate the need of precipitation downscaling to 

provide a correct forecast for the city of Mumbai.  

 

Figure 4.5 Association of the Observed and GEFS forecasted Rainfall. 

a. Climatology (5days moving average) of the observed and GEFS forecasted rainfall  

b.  Mean, Standard deviation and Extremes(at 95th percentile) of the observed and GEFS 

forecasted rainfall  

The optimal number of EOF entering the QR model is defined at the first step of the 

downscaling process. We examine the potential of using a combined covariate vector of the 

selected variables. As described in the data section, the multivariate covariates consists of  21 

× 21 grid point time series over station Santacruz (Mumbai) for 10 meteorological variables 

from the ERA-Interim reanalysis dataset. As reduction of spatial degrees of freedom of the 

covariate is necessary prior to model fitting the multivariate covariate is projected onto its 

leading empirical orthogonal functions (EOFs) using the PCA. The skill scores are calculated 

from the independent cross-validated forecasts, whereby a subsample of 15 years was used for 

model estimation and the remainder 14 years used for validation. 

a

. 

b. 
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Figure 4.6 (a) shows the CQVSS for varying numbers of EOFs ranging from 200 to 7. The 

results are shown for lead time of 24 hours. The CQVSS is largest at 0.99, 0.95 quantile, the 

least skill is obtained for the 0.8 quantile. Table 4.1 shows the proportion of total variance 

explained by the predictors selected under each individual experiment.  

Table 4-1 The EOF selected with different experiments. 

Sr. No. EXPERIMANT No. of PC 

1 PCA 98 200 

2 PCA 90 48 

3 PCA 88 39 

4 PCA 87 35 

5 PCA 86 32 

6 PCA85 31 

7 PCA80 21 

8 PCA75 15 

9 PCA70 11 

10 PCA65 9 

11 PCA60 7 

12 LASSO 87 

13 PCA 98+LASSO 59 

 

The total variance is mainly captured by small number of EOFs. The CQVSS increases with 

increasing numbers of EOFs up to about 14 EOFs, afterward the skill score remains constant. 

The highest CQVSS is reached with about 12–14 EOFs. Key attributes of ensemble forecast 

quality include the reliability of the forecast probabilities and the ability of the forecasts to 

discriminate between different observed conditions (Jolliffe and Stephenson 2003). Forecast 

reliability is evaluated with the PD, HSS and FA following Hsu and Murphy 1986. The PD and 

HSS for varying the number of EOFs are presented with figure 4.6 b. As obtained with CQVSS 

the estimation of PD and HSS also reaches maximum at about 30-39 EOFs. Based on this 

analysis we select 35 EOFs that is convenient to represent the multivariate covariate. The 

selected first 14 EOFs explain about 87% of the total variance of the combined ERA-Interim 

field. Though ,with a high PD the HSS skill score remains low mainly because of the high False 

Alarm Ratio (FA). However the investigations reveal that the events of FA are mostly confined 

to the prior or after 1-2 days the occurrence of the extreme event as revealed with figure 5.6©. 

The best fit model using 14 EOFs is applied to ensemble forecasts of the bias corrected 

predictor variables from the NCEP-GEFS for lead times of 24 and 72 hours(lead time 1–3 

days). Independent validation results, including reliability and discrimination are presented for 

ensemble forecast quality. The model performance with the GEFS predictor dataset is 
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estimated using the CQVSS score (figure 4.6(a)). The CQVSS reaches 50% for the higher 

quantiles. 

 

Figure 4.6 Skill score for varying numbers of EOFs. 

Heidke Skill Score(HSS) and Probability of Detection(PD) of extreme rainfall (at 90th 

percentile) corresponding to different experiments conducted varying the number of EOFs of 

the combined covariate of the predictors(a). The reason of low HSS is the high number of False 

Alarms (FA). However the investigation shows that the FA are mostly confined around the 

occurrence of extreme events(b). The selection of EOFs with individual experiment is referred 

to table 4.1.  

To further verify the quantile forecasts, we investigated whether the quantile forecasts are 

reliable, that is, the wellness of forecasting the individual extreme events. If a quantile forecast 

is reliable, then it is expected that the observed precipitation values lies below the forecast at 

conditional τth quantiles. The performance of the quantile model is verified for forecasts of the 

extremes occurring over the last two years (2006-2007). The verification samples comprised 

paired forecasts and observations at lead time of 24 hours. The observed extreme rainfall is 

compared with the model forecast results and bias-corrected GEFS forecasts results (figure 

4.7).  In figure 4.7 observed precipitation (the red solid line) and the forecast obtained with bias 

corrected GEFS ensemble forecast (green solid line) as well as the ensemble spread (green 

patch) are plotted with the ensemble mean forecast obtained from the model output (blue) and 

its ensemble spread (cyan). For all 29 extreme events over the verification time period, the 
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results reveal a higher uncertainty band associated with the bias corrected GEFS precipitation 

forecast (green band with each subplot). The results at the same time evidences reduction of 

uncertainty spread associated with in the GEFS forecasts with the proposed downscaling 

methodology over all the extreme precipitation events. 

 

Figure 4.7 Performance of quantile forecast of rainfall and GEFS bias corrected rainfall. 

Model performance is checked for forecasting of extreme events (at 90th percentile) over the 

years 2006-07. 29 extreme events occuring over the evaluation time period is shown here. The 

bias corrected GEFS rainfall shows a higher uncertainty (green band) and fails to capture the 

* *
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* *
***

* * * *
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extreme events with mean (green). However, the downscaled rainfall shoes a lower uncertainty 

(cyan band)  as well as attempts to captures the events with mean value(blue) for 17 events 

(marked with red asterisk).  

 

Figure 4.8 Cross validation of the quantile rainfall forecast. 

The reduction in the ensemble spread provides a mechanism for better interpretation of the 

forecast at the present level of forecast errors. It is interesting to point out that the proposed 

model substantially improves the accuracy of precipitation forecast as well. 17 extreme events 

occurring over the verification time period are successfully captured with the model forecast 

* * *
* * * *

* * * * *
* * * **
* * * **
* * **
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on the same day. Out of the remaining 12 extreme events, the further examination reveals that 

9 events are forecasted on 1-2 days prior-after the occurrence of the extreme event (figure 4.8).  

Model performance in terms of forecasting of extreme events (at 90th percentile) observed in the years 

2006-07. The GEFS model forecast(green) fails to capture all the extreme events, however the 

downscaled rainfall at different quantiles provides a considerable improvement over the GEFS 

precipitation. Out of the 29 events observed over the evaluation time period 17 are forecasted correctly 

with the model(marked with red asterisk). However the model captures 5 events 1-2 days prior to its 

occurrence (marked to with cyan asterisk) and 4 events after the occurrence (marked with purple 

asterisk).  

 

4.7 Summary 

 

In this paper we demonstrate that a reliable extreme precipitation forecasts in terms of quantiles 

can be made by means of quantile regression. The approach requires no strong assumptions. 

The inclusion of information from NWP models is also very flexible. The censored quantile 

regression based model is trained with the well simulated climate variables from the reanalysis 

data to constrain parameter estimates of extreme precipitation event. Ensemble forecasts of 

NCEP-GEFS is observed to contain a typical underestimation in the mean, spread, and higher 

moments of precipitation and remains non useful. A sufficiently reliable and unbiased forecast 

is obtained with the help of proposed downscaling model. The regime of extreme rainfall for 

the station Santacruz, Mumbai is correctly identified on a daily time scales with an estimate of 

the associated uncertainty. The downscaling lead to significant improvement in the ensemble 

distribution and ensemble based forecast with decreased spread and reduced systematic errors 

in the ensemble mean. For instance, the raw GEFS forecasts did not capture any of their 

verifying observation whereas, 90% of the observations were captured following the proposed 

downscaling methodology. The three-step censored QR following Chernozhukov and Hong 

(2002) is easy to apply using a standard QR procedure. However, a careful selection of 

predictors is crucial to obtain good forecasts. The model skill can be improved by an 

appropriate selection of forecast variables. A clear and precise measure of goodness is very 

important at the same time. The CQVSS provides a critical check on the performance of the 

model. The forecast skill reduces with the forecast lead time as well, due to the reduced 

indicator cross correlations at longer lead times. The improvement from downscaling also 

declines systematically with lower quantiles.  
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The quantile regression for the τth quantile assumes the linear model (Koenker 2005), the 

assumption of linear dependency seems reasonable for this case as the problem of crossing of 

the conditional quantiles constitutes is not encountered. However, there might be cases where 

the linear assumption is inconvenient or crossing quantiles indeed constitute a problem. The 

crossing of the conditional quantiles also occurs when the training period is short (Friederichs 

and Hense, 2006). Here, it is also important to state that a considerably long training period is 

very important to obtain good forecast skill for very high precipitation quantiles such as the 

0.99 quantile.  

The present study observes an improvement in objective weather forecasting through the 

combination of numerical and statistical models. Since the computational time needed to run 

this model is very short, the model can be easily adopted with input data from number of urban 

stations. The model can be run both automatically and on inputs provided by the forecaster to 

provide extreme rainfall forecast for the different urban centres of the country. It is also straight 

forward to apply the approach to other variables like temperature and wind speed. The study 

highlights importance of development of new and modification of old numerical and statistical 

models as useful tools for short range weather forecasting. The results obtained for the city of 

Mumbai emphasize the fact that the combination of dynamic and statistical methods are much 

valuable to progress in the field of objective weather forecasting. An increased effort in this 

direction can prove to be much beneficial for the fast developing country like India having 

huge number of urban centres without investment in the computational infrastructure. 
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Chapter 5 : PROBABILISTIC RAINFALL FORECASTS ON EXTREME 

DAYS IN MUMBAI 

5.1 Introduction 

 

The science of climatic extremes is important and critical in terms of modeling, socioeconomic 

impacts, damages, and adaptation. Occurrences of rainfall extremes are expected to increase in 

changing climate (Goswami et al. 2006; IPCC 2012), and hence, proper scientific 

understanding of extremes is crucial. Though there are significant research advancements in 

the last two decades in the science of extremes (Cavazos et al. 2008; IPCC 2012; Wheater 

2002; Young 2002) to minimize the impacts, hazards, and losses, there are still a significant 

number of extreme events resulting in huge human and economic losses. One such example is 

the disastrous flood of Mumbai, India in 2005, which caused 409 deaths and an unprecedented 

loss of Rs. 5,000 Crore. More than one million people were rendered homeless because of the 

flood (Rajendra et al. 2006). Early prediction-based alert broadcasting may help in operating 

the existing flood control systems with maximum efficiency, which minimizes losses, such as 

evacuation, flow diversion, alerting the population, preparedness of the disaster mitigation 

team, etc. Such a warning system may alert the population for making their own arrangements 

to safeguard their lives and their properties. People under attack will be relocated well before 

the advancement of the flood. In addition, early warning may enable the preparation of inter-

national assistance actions (Pappenberger et al. 2008). 

Extreme rainfalls are expected to be associated with exceptional atmospheric conditions. The 

possible reason of heavy rainfall occurrence over Indian regions (western coast) is the high-

speed wind coming from the Arabian Sea with excess moisture. Heavy rains over different 

parts of India are usually caused by (Rakhecha and Pisharoty 1996): 

 

1. Formation and subsequent movement of cyclonic, low-pressure regions with anticlockwise 

wind circulation disturbances across the country. These cyclonic disturbances originate 

from the Bay of Bengal and Arabian Sea.  

 

2. Breaks in monsoons, when the rainfalls are confined to the Himalayas and the Indian 

regions. During a break, the monsoon trough gets displaced northwards from the normal 

position and cause heavy rain near the area on the Himalayan side.  

 

Extreme rains of short duration are the consequence of convective instabilities in moist air 
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in small spatial location (Goswami et al. 2006). Although the fraction of extreme rain events is 

caused by synoptic disturbances (Francis and Gadgil 2006), a large number of extremes are 

caused by processes like thunderstorms and are more uniformly distributed with space and time 

(Goswami et al. 2006). Thunderstorms result from the accelerated upward movement of moist 

and warm air. Two environmental conditions, which encourage the development of 

thunderstorms, are (1) very warm and moist air and (2) an environmental lapse rate in which 

temperature decreases more rapidly with altitude than it does for either the dry or wet adiabatic 

lapse rates. Western Indian heavy rain events are associated with a low-pressure region over 

the northwest Bay of Bengal, development of high-magnitude vortices, and increase in 

vertically integrated moisture in the region (Joseph 2006). Although majority of intense rainfall 

events over the west coast of India are associated with large-scale systems such as the Tropical 

Convergence Zone and organized convection over a large-scale oriented in the east–west 

direction, some of them are also associated with offshore convective systems and/or mid-

tropospheric cyclones. 

 

The intensity–duration–frequency (IDF) approach for de-fining design precipitation for water 

resources systems is used to develop a relation between intensity, duration, and frequency. 

Analyzing IDFs show that extreme rainfall has low frequency. Since extreme events are very 

rare, it is difficult to acquire more information about them and, hence, difficult to forecast them. 

The India Meteorological Department (IMD) uses both linear and nonlinear regressions for 

rainfall forecasting. At present, large numbers of models are involved in finding out possible 

combinations of predictors for long-range forecasting; only few models with best skill are 

selected. The National Center for Medium Range Weather Forecasting (NCMRWF), an Indian 

government agency, provides daily weather and rain forecasts based on physics-based models, 

but the models are not capable of predicting heavy rainfall accurately (Khaladkar et al. 2007). 

Here, we present a brief over-view of statistical and dynamical approaches used for extreme 

rainfall prediction. 

 

Numerical weather prediction (NWP) models which are based on dynamical weather equations 

are used to provide short-range forecasts based on the present weather conditions. These 

models use systems of differential equations based on the laws of physics, fluid motion, and 

atmospheric chemistry. The model run takes place with initialization which includes feeding 

the present weather conditions to the model. The partial differential equations for the dynamics 

of weather are solved: some models use finite-difference methods for all three spatial 
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dimensions, while other global models and a few regional models use spectral methods for the 

horizontal dimensions and finite-difference methods in the vertical dimensions (Strikwerda 

2004). Commonly used NWPs are T80, T170, fifth-generation mesoscale model (MM5), and 

Eta model. These models are primarily run to predict mesoscale (20–200 km) precipitation, 

along with other meteorological variables, using synoptic scale (200– 2,000 km) weather 

conditions. In India, the MM5 model is run on triple-nested domains at 90-, 30-, and 10-km 

grid resolutions using initial conditions from the T80 global model of NCMRWF (Gupta et al. 

2004). However, these models are poor in simulating extreme rainfall in India (Khaladkar et 

al. 2007). One possible reason may be be-cause Indian regions are nonhomogeneous with 

respect to the land–ocean interaction, terrain distribution, and prevailing weather systems. This 

aspect of non-homogeneity in Indian regions makes it important to take into account the 

mesoscale conditions of the atmosphere, along with synoptic scale circulations, for the 

prediction of regional or mesoscale heavy rainfall events. Dodla and Ratna (2010) analyzed 

extreme precipitation event which occurred over the west coast region of India on 26 July 2005. 

The results showed that mesoscale atmospheric modeling can be very effective in predicting 

extreme heavy rainfall events. Mesoscale NWPs are run on high spatial resolution of 0.5–1 km 

for local and regional weather forecasts, which demands huge computational effort; however, 

such a high-resolution modeling is necessary for urban regions to incorporate urban land 

surface processes. Urban climate modeling is complex because of the variations of solar 

radiation, temperature, and wind conditions with spatially changing topography and local 

surroundings. The model should also be able to capture urban heat island (UHI) effect, 

momentum, moisture, and heat transfer mechanism caused by urban land use pattern. UHI are 

areas like urbanized cities, which are warmer than the surrounding areas, thereby making the 

high temperature persist for a time longer than normal. Because the area is warmer, the capacity 

of air to retain more moisture increases. The UHI effect plays an important role in perturbing 

thermal and dynamic processes (Lin et al. 2001). The use of inappropriate initial conditions in 

urban areas can severely affect the model output. Although these models are multiply nested 

and use highly meticulous methods of parameterization techniques and higher order numerical 

mathematical equations to represent the dynamics of the atmosphere, output from the models 

are not perfect; hence, there is a need for corrections of flaws and discrepancies (Nott et al. 

2001). NWP models are found to be efficient in predicting weather; however, these models are 

not efficient enough to predict heavy rainfall events well in advance (Březková et al. 2010; 

Hong and Lee 2009; Khaladkar et al. 2007; Selvam 1988). Extreme rainfall threats are 

expressed through the deterministic quantitative precipitation forecast (QPF)- a spatial and 
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temporal forecast of the potential amount of precipitation over a region, probabilistic excessive 

rainfall outlook- categorical probability of rainfall exceeding given thresholds, and 

experimental probabilistic quantitative precipitation product suite-continuous probabilities of 

rain-falls exceeding thresholds. Novak et al. (2011) observed that, on average, the deterministic 

QPF improves over the numerical model; however, the deterministic QPF is still often 

inadequate for the depiction of extreme rainfall events. 

 

Among the statistical and probabilistic models used for the prediction of heavy rainfall events, 

analog methods are most popular. These methods are based on the similarity of atmospheric 

conditions on extreme days. Two atmospheric states are said to be analogous if there is certain 

resemblance. Ideally, two states should be considered similar only if the three dimensional 

distributions of wind, pressure, temperature, water vapor, and other parameters such as sea 

surface temperature, snow cover, etc. are similar (Lorenz 1969). Different criteria may be 

applied along with different variables to select the analog days. It is assumed that the resulting 

rain from both the states will be similar in quantity. Criteria for analogous weather pattern for 

heavy rainfall, as used by Altava et al. (2006), are criterion of proximity in n dimensions (n is 

the number of grid points) and the criterion of correlation between variables that characterize 

the atmospheric state. Only the states that have parameters higher than a prefixed threshold are 

selected to be analogous. The results of the analog method are compared with the deterministic 

model MM5 mesoscale output, and the results show that, while MM5 overestimates the 

rainfall, the analog method underestimates it. Daoud et al. (2011) used analog methods to 

predict precipitation over Saone River basin, France. Past meteorological conditions are used 

as predictors from which analogs will be sorted, and past rainfall amount are used as 

predictands. However, the performance is not satisfactory, suggesting the need for significant 

improvements in the algorithms. 

 

Abundance of literature is available for predicting rainfall over Indian catchments (Bhowmik 

and Durai 2010; Mitra et al. 2011; Rajeevan 2001; Sahai et al. 2000); however, there is scarcity 

of literature exclusively for predicting heavy rainfall from weather patterns. Researchers have 

attempted to link the extreme rains with eccentric atmospheric behavior (Hart and Grumm 

2001; Panziera and Germann 2010; Tymvios et al. 2010); it has been observed that extreme 

rainfall events have a great dependence on anomalous weathers. There are barely any studies 

which have analyzed atmospheric conditions during historic extreme rainfall events in order to 

improve the predictability of these extreme events over Indian regions. However, globally, few 
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recent studies have related extreme rainfall with mesoscale and synoptic scale weather 

conditions. 

 

The fingerprinting technique, developed by Root et al. (2007), is a recently developed statistical 

method that uses clustering technique to detect the atmospheric variables and areas undergoing 

significant changes during extreme events. These variables and areas become the fingerprint 

of the extreme events. For the prediction of extreme events, a pattern recognition technique is 

used to match the fingerprint and the weather of a given day to be classified as extreme or non-

extreme day. Root et al. (2007) used the fingerprinting technique to predict extreme weather 

phenomena like severe snow fall, flash flood, severe thunderstorm winds, etc.; the method has 

been found to be able to distinguish between types of events, for example, whether it is a snow 

event or a severe thunderstorm wind event. Here, we apply the same for predicting the extreme 

rainfall event in Mumbai; however, such a method is observed to result in a huge number of 

false alarms. This motivates us to use a machine learning technique: support vector machine 

(SVM)-based algorithms involving the anomalous weather pattern to predict extreme weather 

events for alert broadcasting. Here, we first describe the data used for this study followed by 

the application of the finger-printing approach for the Mumbai case study with it limitations. 

With this background, we present in detail the proposed algorithms with the improvements 

achieved over the results of the fingerprinting approach. 

 

 

5.2 Data 

 

The major data, which are required to be collected for extreme weather prediction, are the 

rainfall data and historical weather data. The rainfall data of Mumbai is collected from the rain 

gauge station at Colaba. The Colaba rain gauge station in Mumbai is located towards the south 

of Mumbai, the commercial capital of the country, located over Western Ghats of western 

India. Mumbai is a highly urbanized city and is usually threatened by short-term intense rains 

during south-west monsoon. Colaba station is one of the observatories of IMD in Mumbai; it 

is located at 18.93° N and 72.85° E. The Indian summer monsoon (June, July, August, and 

September) hourly rainfall data is collected for the period 1969–2008 from IMD. Except for 3 

months (June 1991, September 1993, and September 2006), data are available without any 

break. The prediction is performed in this work at 6 to 48 h lead time. The weather data used 

for this analysis is the six-hourly National Centers for Environmental Prediction/National 

Center for Atmospheric Research (NCEP/NCAR) reanalysis data. The atmospheric variables 
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used in the study are at surface level and at the 850-, 600-, and 400-hPa levels. Surface level 

variables include air temperature, mean sea level pressure (MSLP), precipitable water (PW), 

relative humidity (Rhum), U-wind, and V-wind. The 850-, 600-, and 400-hPa level variables 

include air temperature, vertical wind velocity (omega), relative humidity, U-wind, and V-

wind. The atmospheric variables for the area with latitude from 5° to 40° N and longitude from 

65° to 100° E are obtained from the NCEP/NCAR global reanalysis data set (Kalnay et al. 

1996). The reanalysis data set is available for 17 pressure levels and has a 2.5×2.5° spatial grid 

resolution. The data set is available from 1948 to date. Six-hourly atmospheric variables from 

1 January 1969 to 31 December 2008 are downloaded from the NCEP/NCAR download page 

(http://www.esrl.noaa.gov/psd/data/gridded/ data.ncep.reanalysis.html#temp) in NetCDF 

format. 
 

The data from 1969 to 2008 are divided into a training set and a validation set. The training 

set consists of extreme rainfall events from 1969 to 1999 and the validation period is from 2000 

to 2008. As per the IMD definition, heavy precipitation event (HPE) and extreme HPE are 

defined as 24-h precipitation events, when rainfall exceeds 120 and 200 mm, respectively. 

Here, we consider “6-h” events and define extreme rainfall, when the amount exceeds 75 mm 

(≥75 mm). This is slightly on the higher side in terms of magnitude, as compared to the IMD 

definition. This is intentionally set, considering the short duration (which has high intensity 

com-pared longer duration) and high monsoon rainfall in Mumbai, compared to other regions 

in India. A total of 66 such events are identified over Mumbai from 1969 to 2008. Out of all, 

two events are having rainfall more than 200 mm; the highest being 338.00 mm which occurred 

on 25 June 1985 and the other one with rainfall amount of 234.8 mm occurring on 5 July 1974. 

Based on the above definition, the event database is generated which is presented in Table 5.1. 

A total of 66 extreme events are identified; 50 events are used for training and 16 events are 

used for validation/testing. 
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Table 5-1 Extreme rainfall events database 

       

S. no. Year Month Day Time  Amount (mm) 

       

1 1970 6 16 1  87.2 

2 1970 6 17 1  141.4 

3 1970 8 18 3  102.2 

4 1970 9 22 1  108.6 

5 1971 6 23 1  138.2 

6 1971 6 23 3  118.1 

7 1971 8 26 1  85.4 

8 1972 6 28 1  120.2 

9 1974 7 4 1  143.7 

10 1974 7 5 1  234.8 

11 1974 8 4 1  169.7 

12 1975 7 30 3  96.5 

13 1975 9 2 2  115 

14 1977 6 17 2  84.7 

15 1977 7 21 4  91.6 

16 1977 9 2 2  122 

17 1978 6 15 1  89.6 

18 1979 7 31 2  95.8 

19 1981 9 22 4  96.2 

20 1982 6 22 1  118.5 

21 1983 7 12 1  90 

22 1983 7 17 2  82.8 

23 1983 8 15 1  105.2 

24 1983 9 24 4  93.7 

25 1984 6 13 2  98.8 

26 1984 6 30 1  110.5 

27 1984 7 1 4  153.5 

28 1984 7 3 4  131.3 

29 1984 9 12 2  90.5 

30 1985 6 16 4  142 

31 1985 6 25 2  338 

32 1986 8 8 1  90.5 

33 1987 7 1 2  113.5 

34 1989 6 16 4  85.5 

35 1990 6 15 4  138.8 

36 1990 6 16 3  128.8 

37 1990 6 26 1  102.3 

38 1990 8 15 1  153.9 
39 1992 7 16 4  89 
40 1994 7 12 2  96.6 
41 1995 9 1 1  139.9 
45 1997 8 22 4  86.4 
46 1997 9 26 1  98 

47 1998 6 27 3  128.9 

48 1998 8 9 4  185.7 

49 1998 8 25 4  88.1 
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50 1999 6 23 1  100.6 

51 

52 

    2000 

    2000 

        7 

        7 

     3 

     8 

          4  

          1 

            99.5 

         105.5 

53 2000 7 12 2           159 

54 2001 7 8 1  106.6 

55 2003 6 19 1  89.2 

56 2004 7 29 3  97.2 

57 2004 8 2 2  90.6 

58 2005 6 23 1  124.1 

59 2005 7 26 2  NAN 

60 2005 9 10 1  164.8 

61 2006 7 4 3  107.6 

62 2006 8 6 2  89.5 

63 2007 6 23 3  110.5 

64 2007 8 3 2  111.8 

65 2008 7 1 1  83.6 

66 

 

2008 

 

7 

 

27 

 

3 

 

 92 

 

 
 

5.3 Fingerprinting extreme rainfall events 

 

The fingerprinting technique employed for predicting extreme rainfall events has been 

developed by Root et al. (2007). The technique is developed based on the hypothesis that 

extreme event days have a specific weather pattern (fingerprint) which is different from the 

normal day’s weather pattern. As for example, the vertical velocity or the Lagrangian rate of 

change in pressure, commonly known as omega in meteorology, pattern over India, before 6 h 

of heavy rainfall event occurred in Mumbai on late night 21 July 1977, is presented in Fig. 1b, 

which is different from that of the normal condition (Fig. 5.1(a)). The underlying hypothesis 

of the fingerprinting approach is that such an omega pattern is only expected before the 

occurrence of extreme event and not on a normal weather day. 

 

It is observed from Fig. 5.1 that the omega pattern near the Tibetan Plateau, in Central India, 

and in the Arabian Sea for extreme events is different from those of the normal condition. The 

omega values in these regions deviate from the mean condition before extreme events and such 

patterns usually form the fingerprint for an extreme event. Such retrieved patterns are used for 

predicting extreme events, well in advance. 

The fingerprinting technique considers maximum anomalies in the atmospheric variables 

before extreme events to determine the regions that are consistently having highly anomalous 

values during extreme events. Standardized anomalies, i.e., deviations from the climatological 

mean, are calculated all over the domain considered for analysis: the maximum (peak) and 
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minimum (valley) anomalies for all extreme events are located; their values and locations are 

obtained. The clustering technique is applied to figure out the areas which show highly 

anomalous weather behavior during extreme rainfall. The present study uses strong point 

analysis, as used by Root et al. (2007), to cluster the obtained peaks and valleys. Depending 

upon the resemblance of cluster with weather pattern of extreme rainfall events, significance 

of cluster is determined. Clusters with high significance form the fingerprint of an extreme 

event. For assigning a day as extreme or non-extreme, the day’s score is calculated which gives 

an estimate of how close the weather pattern of the day is to the fingerprint (pattern) of the 

extreme event. 

 

Figure 5.1 Fingerprinting of extreme events 

Condition of omega at 850 hPa pressure level for (a) normal condition and (b) extreme condition. The 

patterns near the Tibetan Plateau, in Central India, and in the Arabian Sea form the fingerprint 
 

 

The methodology as followed by Root et al. (2007) begins with developing an event database 

which is presented in Table 5.1. The next step is to create the climatology of weather variables 

(here, we use the NCEP/NCAR reanalysis data as proxy to be observed), i.e., to find the 

temporal mean and standard deviation of all the atmospheric variables over specific grid points. 

The specific grid points include a region larger than the study area. The region considered in 

the present study extends from a latitude of 5° to 40° N and a longitude of 65° to 100° E at 2.5° 

grid resolutions. The primary reason behind this selection is to capture the mesoscale (>5 km) 

and synoptic scale (>1,000 km) weather patterns before heavy rainfall. The climatology of 

atmospheric variables is created in order to determine the atmospheric variable’s anomalies 

during events. The 40-year (1969–2008) climatology is prepared for each of the variable on 

each day of the monsoon (June to September). For example, the first July climatology of 

temperature is defined by its mean and standard deviation over 40 years. The climatology 
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process uses a 21-day centered mean technique on the means and standard deviations computed 

over 40 years, i.e., taking the 21-day mean of the means. This procedure is as per Root et al. 

(2007). 

To start with, anomaly values of weather variables before 48 to 6 h of each event are 

calculated at each grid point. For each meteorological variable, the climatological mean, X, is 

subtracted from the NCEP/NCAR variable values (x) and divided by the standard deviation (σ) 

to arrive at a normalized climatological anomaly. The formula for calculating is given in Eq. 

1: 

𝑁 =
𝑥−𝑋

𝜎
     1 

 

where N is the normalized climatological anomaly value at a particular grid point on a 

particular day. Generating and normalizing the anomalies converts a pseudo-normal 

distribution into a standard normal distribution (Hart and Grumm 2001). 
 

The primary peak (PP; maximum normalized anomaly value in the domain), secondary peak 

(SP; second maximum normalized anomaly value in the domain), primary valley (PV; 

minimum normalized anomaly value in the domain), and secondary valley (SV; second 

minimum normalized anomaly value in the domain) with their normalized anomaly values (or 

simply anomalies) are identified in the whole do-main for each extreme event in the training. 

It should be noted that the positions of peaks and valleys will change with the change of 

variables. The positions and values of the PP, SP, PV, and SV are obtained for each variable 

for each extreme event. In order to determine the regions which are consistently different in 

terms of weather pattern during extreme rainfall events, clusters of positions of critical points 

(PP, SP, PV, and SV) are obtained. A cluster for a particular atmospheric variable is defined 

as the number of grid points which have high anomalous value of the variable during most of 

the extreme events; each cluster forms a part of an extreme event’s finger-print. Corresponding 

to each of the atmospheric variables, there are four clusters resulting from PP, PV, SP, and SV. 

Conventional clustering techniques can be used for clustering, but in order to make clusters 

less compact and have variegated shapes, strong point analysis, developed by Root et al. 

(2007), is used which includes members in a cluster that have contiguous locations with a high 

frequency of peak or valley occurrences. Strong point analysis involves two steps for 

clustering: defining strong points and constructing clusters. In defining strong points, a term 

called grid point density is used. Grid point density of PP/PV/SP/SV at a grid point is defined 

as the number of occurrences of PP/PV/SP/SV on that grid point before extreme events. It 

identifies the grid points where the weather variables are constantly responsible for an extreme 
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event. A gridded map of the region considered for the study is used for strong point analysis 

and is shown in Fig. 5.2. A detailed description of constructing clusters using strong point 

analysis can be found in Root et al. (2007). 

After constructing the cluster for each peak type for each variable, it is required to determine 

the significance (or importance) of each cluster to extreme rainfall events. The significance of 

the cluster is estimated in terms of the spatial location of the cluster and in terms of the anomaly 

values which the cluster grid points have. The significance of the cluster location is the estimate 

of how important the spatial location of the cluster is for extreme rainfall event occurrence. 

Alpha (α) measures the spatial significance of a cluster and is calculated by Eq. 2 as suggested 

by Root et al. (2007): 

𝜶𝒊 =
𝑵𝒄𝒍𝒖𝒔𝒕,𝒊

𝑵𝒆𝒗𝒆𝒏𝒕
{𝒎𝒂𝒙 {

(𝝆𝒄𝒍𝒖𝒔𝒕,𝒊−𝝆̅)

(𝝆𝒄𝒍𝒖𝒔𝒕,𝒊+𝝆̅)
} , 𝟎}                                          2 

Where Nclust,i is the number of members in the cluster (cluster of the ith atmospheric variable) 

and Nevent is the number of events in the database; ρ is the event density over the cluster’s grid 

points and is defined as the average number of PP/PV/SP/SV of a variable on each grid point 

inside the cluster and ρ ̅is the average number of PP/PV/SP/SV on each grid point all over the 

domain. 
𝑁𝑐𝑙𝑢𝑠𝑡,𝑖

𝑁𝑒𝑣𝑒𝑛𝑡
 is called the consistency coefficient. The consistency coefficient will be higher 

if there are more numbers of members inside the cluster, which would in turn mean that more 

extreme events have their PP/PV/SP/SV of a variable inside the cluster. The higher the 

consistency coefficient, the more will be the impact of the variable’s cluster on the fingerprint 

of extreme events. In the above equation, ρ̅ is assumed to be the density of a completely random 

distribution of PP/PV/SP/SV. This equation provides the comparison between the number of 

PP/PV/SP/SV of a variable inside the cluster and the number of PP/PV/SP/SV of the variable 

all over the domain when there is random distribution of peaks or valleys. A denser cluster will 

have a larger α value, indicating that the peak and valley locations play a consistent role in the 

event’s fingerprint. Negative values are not considered because they would mean that the 

cluster represented a local minimum in density rather than a local maximum. The values of α 

can range from 0 (totally random) to 1 (a perfect cluster) (Root et al. 2007). To measure the 

significance of anomaly values of a cluster, a measure phi (φ) is used which is defined as in 

Eq. 3 by Root et al. (2007); it measures the anomaly value significance of a cluster: 

𝝋𝒊 =
𝑵𝒄𝒍𝒖𝒔𝒕,𝒊

𝑵𝒆𝒗𝒆𝒏𝒕
{𝒎𝒂𝒙 {(𝟏 − 𝝈𝒄𝒍𝒖𝒔𝒕,𝒊) (|𝟏. 𝟓 − |𝝁𝒄𝒍𝒖𝒔𝒕,𝒊||)} , 𝟎}                  3 

 

where σclust,i and μclust,i are the standard deviation and mean of the cluster member’s 
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PP/PV/SP/SV values of the variable i, respectively. The φ measures how important the values 

of PP/PV/SP/SV inside the cluster are to the event fingerprint. 

This equation can be interpreted as the comparison between the standard deviation and mean 

of the cluster member’s values and the standard deviation and mean of a completely random 

distribution of PP/PV/SP/SV values. 

 

Figure 5.2 Location of Mumbai, India and location of grid points at which predictors are considered for 

extreme event predictions.  

The grid points are numbered for better explanation 

 

Larger values of φ indicate that the peak’s and valley’s standardized anomaly values provide a 

large part of the event fingerprint. The range of values for φ is from 0 (random) to infinity 

(impossible case) (Root et al. 2007). All the clusters which are significant in terms of both their 

spatial location and the anomaly values of their members are considered to be important for 

the prediction of extreme rainfall events. Prediction involves matching the location and value 

of future day atmospheric variable with the respective important cluster’s location and values 

of members. Cluster matching is used to estimate the match between the value and location of 

a PP/PV/SP/SV of a variable on a particular day with the corresponding clusters PP/PV/SP/SV. 

This matching provides a partial assessment whether the day is an extreme or a non-extreme. 

The location of PP/PV/SP/SV of a variable is compared with the corresponding cluster’s 
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member’s PP/PV/SP/SV location, and spatial matching is calculated using a measure called 

gamma (γ). The γ is calculated using Eq. 4 (Root et al. 2007): 

 

𝜸𝒊 = ∑ 𝒆𝒙𝒑 (
−𝒅𝒎

𝟐

𝒄𝟐 )𝒋                                                      4 

 

Equation 4 represents a weighing factor used in Barnes’ interpolation scheme (Barnes 1964; 

Sinha et al. 2006). Here, dm denotes the distance between the observation point (j) and the grid 

point where the peak or valley has occurred; c controls the rate of fall of weighing function 

with distance and is calculated as given by Koch et al. (1983): 

 

𝒄 = (𝟓. 𝟎𝟓𝟐)
𝟏

𝟐 {
𝟐∆𝒏

𝝅
}                                                    5 

 

Where Δn = (area/number of stations). Weights for the observations farther than a distance of 

5c (also called radius of influence) from a particular grid point are set to zero as suggested by 

Narkhedkar et al. (2008). 
 

For matching the anomaly value of a potential future event, the value of PP/PV/SP/SV of all 

the variables is compared with the corresponding cluster’s member’s PP/PV/SP/SV values. 

The anomaly value matching is calculated using a measure called chi (χ). The χ measures how 

well the anomaly value of a peak or valley matches the set of anomaly values of the 

corresponding cluster members. As suggested by Root et al. (2007), for calculating χ, a 

histogram of the cluster member’s anomaly values is created. The χ is calculated by 

ascertaining in which bin the forecast PP/PV/SP/SV anomaly value belongs. Then, a weighted 

average of the adjacent histogram bins yields χ as in Eq. 6: 

𝝌 = 𝟎. 𝟐𝟓𝝎𝒌−𝟏 + 𝟎. 𝟓𝝎𝒌 + 𝟎. 𝟐𝟓𝝎𝒌+𝟏                                     

6 

 
where ωk is the cluster’s histogram frequency for bin number k. Larger values of χ indicate that 

the anomaly value of the forecast peak or valley fits better with the fingerprint. Here, α and φ 

are called cluster importance metrics and γ and χ are called pattern matching metrics. The 

pattern matching metrics, γ and χ, combined with the cluster importance metrics, α and φ, are 

summed to obtain the weighted matching value for each cluster, i, represented as vi given in 

Eq. 7: 

𝒗𝒊 = {(
𝜸𝒊

𝜸𝒎𝒂𝒙,𝒊
) (𝜶𝒊)} + {(

𝝌𝒊

𝝌𝒎𝒂𝒙,𝒊
) (𝝋𝒊)}                                    7 
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This combined measure yields maximum values for a forecast peak or valley when it closely 

matches the position and anomaly values of a dense cluster. The inclusion of αi and φi assigns 

weights based upon how important that field is to that fingerprint of extreme events. The sum 

of v values corresponding to all the atmospheric variables is the event score for that event as 

given by Eq. 8. An event score is computed for an event based on the expected fields 

(PP/PV/SP/SV) for a given forecast. The larger the event score, the better the expected peaks 

or valleys match that fingerprint: 

𝑬𝒗𝒆𝒏𝒕 𝑺𝒄𝒐𝒓𝒆 = ∑ 𝒗𝒊                                                  8 

For predicting extreme rainfall events, a threshold is developed based on the event score 

which is at the first quartile of event scores determined by hind casting. This approach does not 

test the hypothesis that the fingerprints are absent on non-extreme days, and hence, it is 

associated with false alarms, i.e., predicting non-extreme days as extreme days. 

 

 

5.4 Two-phase SVM for extreme events prediction 

 

The limitations of the fingerprinting approach are as follows: 

 

1. The fingerprints identified by the approach may also be present on a non-extreme day, 

which may result in false alarms.  

 

2. There may be multiple numbers of weather patterns, which may result in extreme events; 

however, the finger printing approach considers only one fingerprint. As for example, we 

observe that, for Mumbai, there exist two weather patterns, which result in extreme rainfall.  

 

Hence, we propose a support vector classifier for classifying a specific day’s weather pattern 

to extreme or non- extreme day, and it considers both weather patterns of extreme or non-

extreme days. Multiple (two for Mumbai) weather patterns are taken into account in multiple 

(two) phase support vector (SV) classifiers. For example, let us assume that there are two 

weather patterns, wp1 and wp2, resulting in two types of extreme rainfall events, e1 and e2. 

The first phase SV classifier first classifies a day into either of the groups: (1) e1 or (2) e2 or 

non-extreme. If the day is classified as group 2, the second phase SV classifier is applied to 

classify to e2 or non-extreme. Hence, the pro-posed methodology takes care of both limitations 

of the fingerprinting approach. First, we discuss here a brief over-view of SVM as a prerequisite 
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and then discuss in detail the proposed methodology. 

 

5.4.1 Overview of the SVM 

 

Although SVMs were introduced in 1992 by Boser et al. (1992) in the Conference on 

Computational Learning Theory (COLT)—1992, there formal development took place in 1995, 

when Cortes and Vapnik (1995) developed the SVM classifier for binary classification. SVM 

is a ma-chine learning tool used as supervised statistical learning algorithm for classification 

and regression. The SVM classifier is widely used in bioinformatics (and other disciplines) due 

to its high accuracy, ability to deal with high-dimensional data such as gene expression, and 

ability in modeling diverse sources of data (Schölkopf and Smola 2002). SVMs belong to the 

general category of kernel methods (Cristainini and Shawe-Taylor 2000). The essence of SVM 

lies in four main concepts (Noble 2006): the separating hyper plane, the maximum margin 

hyper plane, the soft margin, and the kernel function. The separating hyper-plane separates the 

classes using the training instances, the maximum margin hyper plane is the optimal hyper 

plane which is located at a maximum separation from both classes, the soft margin allows some 

erroneous instances to be misclassified so that overall result is not affected, and the kernel 

function allows the mapping of input space to feature space with least computational efforts. 

 

Using the feature of two SVM class constructs in a plane called separating hyperplane, an n−1 

dimensional plane corresponding to an n dimension space separates the classes apart. The 

hyperplane is so selected that both classes are separated by a maximum distance from the plane; 

this plane is called the maximum margin hyper plane. The equation of the separating hyper 

plane is given in Eq. 9: 

𝒘 ∗ 𝑿 + 𝒃 = 𝟎                                                            9 

where X is the d-dimensional feature matrix consisting of features of classes to be separated, b 

is the bias, w is normal to the hyper plane, ׀b׀/ ׀׀w׀׀  is the perpendicular distance from the hyper 

plane to the origin, and ׀׀w2׀׀ is the Euclidean norm of w.  

In real-world problems, the data is not easily classified because of errors in some features of 

instances. SVM deals with the errors in data by letting few instances be misclassified by 

introducing a margin called soft margin; it allows outliers to be misclassified without affecting 

the final result. However, it is necessary that the soft margin should not allow too many 

instances to be misclassified; for this, a control parameter is provided to limit the number of 

instances to cross the hyper-plane and enter into the opposite class. In real-world problems, the 
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data is not separable by a linear hyper plane; for example, a two-feature data may not be 

separated by a linear hyper plane, but it can be separated by a nonlinear hyper plane. 

Constructing the optimal curve to fit the data is a difficult task; instead, the data is transformed 

from the input dimension space to some higher dimension space called the feature space where 

the data becomes linearly separable. Kernel functions do the important task of transforming 

(mapping) input space into feature space. If the transformed data and the separating plane are 

brought back to input space, a highly complex separating curve can be observed. Once the 

optimal hyper-plane, which maximizes the separating distance between the two classes, is 

constructed, either in input space or in feature space, classification is easy; points are classified 

depending on the position of their residence with respect to the separating hyper plane given in 

Eq. 10: 

𝒇(𝑿) = 𝒔𝒈𝒏(𝝋(𝑿)𝒘 + 𝒃)                                                     10 

Here, ϕ is the function which transforms data from the input space, R with d features, to the 

higher dimension feature space, H: 

𝝋: 𝑹𝒅 → 𝑯                                                                 11 

The performance of any data-driven prediction model depends on the correct selection of 

predictors. Here, in the present study, we propose the anomaly frequency method (AFM), 

where based on the frequency of high anomaly weather variable values, before extreme events, 

the predictors are selected. The following subsection presents the details of the AFM. 

 

5.4.2 Anomaly frequency method 

 

The AFM is an efficient technique in extracting the features which discriminate extreme events 

and non-extreme events. The name “Anomaly Frequency Method” comes from the frequency 

of anomalies, which is used to extract features of extreme events. Atmospheric variables at all 

the four pressure levels, at all the grid points over the domain considered, and at different time 

steps before the occurrence of the event are used to extract the features of the extreme. An 

anomaly is defined, based on experience from the fingerprinting technique, as the deviation of 

more than 1.25 times climatological standard deviation from the climatological mean. The 

anomaly thresh-old is calculated as in Eq. 12: 

𝛿+ = 𝑋̅ + 1.25𝑆𝐷̅̅ ̅̅  

𝜹− = 𝑿̅ − 𝟏. 𝟐𝟓𝑺𝑫̅̅ ̅̅                                                       12 

where δ+ and δ- is the positive anomaly threshold and negative anomaly threshold respectively, 



85 

 

for some variables, say V-wind, having a climatological mean X and climatological standard 

deviation SD at a particular time instant at a grid point. If the variable value at a time instant 

on a grid point is more than the positive anomaly threshold, then the value is named as positive 

extreme anomaly, and if it is lesser than the negative anomaly threshold, it is named as the 

negative extreme anomaly. All the grid points are analyzed for finding the anomalies preceding 

extreme events. Before extreme events, variable value is compared with the respective anomaly 

threshold to find the extreme anomalies, if any, on each grid point; they can be positive or 

negative. The total number of extreme anomalies on each grid point is calculated: this gives 

the anomaly frequency on each grid point. The methodology helps to identify the variables and 

the grid points which are showing extreme anomalous behavior consistently during extreme 

events. 

 

For a variable, those grid points are selected as feature grid points which have a very high 

frequency of extreme anomalies. Consider the region shown in Figure 5.2, all the grid points 

are analyzed, say, for 50 extreme events. 

 

Anomaly frequency at each grid point for surface level V-wind before 6 h of event 

occurrence is determined. Figure 5.3 shows the frequency corresponding to each grid point in 

the region. 

 

From figure 5.3, it is observed that grid point number 26 has the highest frequency of 26, 

which means that, out of 50 extreme events considered, 26 events have highly anomalous V-

winds at grid point number 26. 
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Figure 5.3 Frequency of high positive anomaly of V-wind velocity at the surface level  
At different grid points, 6 h before the extreme events. Fifty extreme events are considered for this 
 
 

 

AFM identifies two weather patterns corresponding to extreme rainfall over Colaba, Mumbai. 

One weather pattern corresponds to daytime (1800–0600Z) extreme events and the second 

corresponds to nighttime (0600–1800Z) extreme events. As the extreme rainfall events over 

Mumbai are associated with two weather patterns, it is essential that a model is developed 

which can simulate both weather pat-terns separately: a two-phase SVM is developed. The 

two-phase SVM uses two trained SVM models to classify a time period based on the day’s 

weather pattern as an extreme or a non-extreme event. 

 

5.4.3 Two-phase SVM 

 

This section describes SVM model building for classifying extreme and non-extreme rainfall 

events based on the weather features extracted using the anomaly feature tech-nique. For the 

training of SVM, features of both extreme and non-extreme classes are used. It is found that 

there are two weather patterns associated with Mumbai rainfall. Conventional classification 

model based on single SVM may not work well because it considers a single weather pattern 

for the classification. Figure 4 presents the two-phase model. 
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Figure 5.4 Flowchart of the two-phase SVM model 
 

SVM model building is mostly a hit and trial process; in its general form, it includes finding 

the best kernel and its parameters, weights, and bias. The classification performance may also 

depend on the method used to find the hyper plane, i.e., to estimate the weights and bias. In the 

study, quadratic programming, sequential minimal optimization, and least squares method are 

used. These methods estimate the parameters in order to maximize the distance between the 

two classes. The best possible combination of kernel and kernel parameter need to be searched 

by hit and trial procedure. SVM determines the optimal separating hyper plane based on the 

support vectors selected from the data used for training. A large number of support vectors may 

not form a good classifier as it has an adverse effect on generalization (Quang-Anh et al. 2003); 

also, in contrast, a smaller number of support vectors increases the computational cost (Zhan 

and Shen 2005). In the present study, the extreme occurrences are rare compared to non-

extremes. Hence, a large number of support vectors may have resulted from non-extreme 

events and to avoid that, here, we limit the number of non-extreme instances for training SVM. 

In the present study, it is observed that selection of the number of instances, especially the non-

extremes, have a significant impact on classification. An extensive hit and trial method is 

employed to use the optimal number of non-extremes for training. It is found that using 50 and 

30 non-extreme instances for training two models of SVM corresponding to night events and 

day events, respectively, yielded the best performance for testing. As shown in figure 5.4, two 

SVM models are trained: SVM1 is trained with 32 night extreme instances and 50 non-extreme 

instances; SVM2 is trained with 18 day extreme instances and 30 non-extreme in-stances. 

Night Events 

Non- Extreme 

Features 

SVM 1 

Day Events 

Non- Extreme 

Features 

SVM 2 

Prediction Features SVM 1 

Predicted Non- 

Extremes by SVM 1 
SVM 2 

Predicted 

Extremes 

Predicted 

Non- 

Extremes 
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Figure 5.4 also shows validation/prediction which is carried out in two steps: first, the instances 

to be predicted are fed in SVM1 for classification; if SVM1 predicts any instance as extreme, 

then the instance is extreme and is expected to have a weather pattern similar to night events 

weather pattern. If SVM1 predicts the instance as non-extreme, it is fed to SVM2 for 

classification. Depending on SVM2 prediction, the instance will be classified as extreme or 

non-extreme. An important note here is that SVM can easily help in discerning the class of 

instance by just looking at the sign of the hyper plane function, but the interpretation of 

parameters is difficult as the feature have been transformed to a higher dimension feature space. 

 

5.5 Results and discussion 

 

Extreme rainfall prediction of Mumbai, India is first carried out using the fingerprinting 

technique. As will be discussed in the next subsections, the fingerprinting technique performs 

poorly in predicting extreme rainfall events over Mumbai. A critical inspection is carried out 

to find the real cause for the poor performance of the fingerprinting technique and the reasons 

of extreme rainfall events over Mumbai. An attempt is made to model the features of extreme 

and non-extreme rainfall events. The following subsections provide with important results 

obtained from the study. 

 

5.5.1 Fingerprinting results 

 

The analysis yields information about the atmospheric variables which are the most important 

predictors of heavy rainfall events. These variables form the fingerprint of heavy rainfall events 

over Mumbai. By comparing the fingerprint with any future weather pattern, the possibility of 

heavy rainfall over Mumbai can be predicted before 48 to 6 h. 

 

Analysis of atmospheric variables 48 h before extreme events show that the SV of negative 

anomalous relative humidity, having an α value of 0.7055, can be considered as the most 

important predictor. Figure 5.5(a) shows the 850-hPa relative humidity pattern over the domain 

before 48 h of extreme event which occurred on 22 June 1982. Negative relative humidity 

prevails over the eastern part between latitudes 22.5° N to above 30° N near 65° E which is 

common to other extreme events. 

 

The second most important predictor is the location of the SP of PW having an α value equal 
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to 0.6650. Figure 5.5(b) shows the surface level PW pattern over the domain, 48 h before the 

extreme event of 22 June 1982. It can be observed that there is high PW content over a region 

close to Mumbai. The most important predictor by the anomaly value is the surface level V-

wind with PP having a φ value of 0.4857, the next being the 850-hPa level V-wind SP and the 

850-hPa level PP. Figure 5.5(c) shows the surface level V-wind pattern over the domain, 48 h 

before the extreme event on 22 June 1982. It can be observed from figure 5.5(c) that high-

velocity winds near the east coast are present, which is common to most of the extreme events; 

it is possible that V-wind in the region having similar velocity may be an important predictor 

of extreme events. 

Table 5.2 shows the most important predictors of heavy rainfall over Mumbai, when all the 

given atmospheric levels are considered. The average individual score for the above variables 

from 50 training events is given in Table 5.3; the higher the individual score of the variable, 

the higher is its overall importance in predicting extreme rainfall event. 

From Table 5.3, it can is observed that, among all variables, the negatively anomalous U-wind 

at surface level has a maximum score of 1.11, hence is the most important predictor of extreme 

events. U-wind is followed by negative anomalous V-wind at the 850-hPa level with a score 

of 1.04. 

(a) Relative humidity at 850 hPa(%)       (b) Precipitable water at surface (kg/m2)              (c) V-wind velocity at 

surface (m/s)  

 

Figure 5.5  Fingerprints of key predictors before extreme events:  
(a) relative humidity at 850 hPa (in percent), (b) PW at surface (in kilograms per square meter), and 
(c) V-wind velocity at surface (in meters per second). The SV of relative humidity, SP of PW, and PP 
of V-wind are the three most important predictors for fingerprinting analysis 
 

 

Similarly, the most important atmospheric variables before different time intervals are 

determined: Table 5.4 shows the contribution from each important variable towards the 

prediction of extreme events before 36, 24, 12, and 6 h of the occurrence, respectively. 
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Table 5-2 Most important predictors for fingerprinting 

Climate variable Peak type Alpha (α)  Phi (φ) 

       

U-Wind_Surface PP 0.54230 
 

0.40379 

V-Wind_850-hPa SP 0.649364 
 

0.46566 

V-Wind_Surface SP 0.648426 
 

0.29718 

V-Wind_850-hPa PP 0.632212 
 

0.485784 

V-Wind_850-hPa PV 0.633954 
 

0.338598 

Precipitable Water_Surafce PV 0.61841 
 

0.318942 

Precipitable Water_Surface SP 0.6650 
 

0.047502 

Rhum_850 PV 0.70551 
 

0.024804 
       

 

It can be observed that negative anomalous U-wind and V-wind consistently provide a good 

contribution to the fingerprint of the extreme event as their score values are comparatively high. 

Also, before 36 and 24 h of the occurrence of events, the positive anomalous relative humidity 

score increases at the 850-hPa level which signifies that there is an increase in relative humidity 

before 36 and 24 h of occurrence of the event. PW is also a significant indicator of extreme 

event; at few locations it decreases, while at other locations it increases before 48 h of event 

occurrence; however, it does not show a decrease before 6 h of event occurrence. Although 

there is a negative anomalous MSLP present at a certain location before 12 h of occurrence of 

the event, there is an increase in MSLP before 6 h of the occurrence of the event. 

 
Table 5-3 Individual score of most important predictors before 48 h 
 

Climate variable Peak type Score 
   

V-Wind_850 PP 0.7920565 

V-Wind_Surface SP 0.7106992 

V-Wind_850-hPa PV 1.0446386 

V-Wind_850-hPa SP 0.9798098 

U-Wind_Surface PV 1.1117549 

PPWTR_Surface PV 0.4463701 

PPWTR_Surface SP 0.5812755 

Rhum_850 PV 0.227172 
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The fingerprinting technique eventually determines the event score of any rainfall event based 

on the match of the weather pattern with the fingerprint of extreme rain-fall event. Depending 

on the event score, the weather pattern will correspond to extreme rainfall event or non-extreme 

rainfall event. For the purpose of classification, past extreme events are used to train the model 

(hind casting) and their scores are calculated. All the 50 training events are used to train the 

model and thresholds are obtained. The threshold is determined as the 1st quartile or 25th 

percentile of all the 50 scores. The thresholds for 48, 36, 24, 12, and 6 h before event occurrence 

are set as 5.26, 6.85, 4.83, 4.85, and 5.38, respectively. The fingerprinting technique is 

validated using data from 2000 to 2008. A total of 4,392 (9 years×122 days per year×4 parts of 

a day) instances are present for model validation. The model predicted more than 900 instances 

as extremes; however, there are only 16 extreme events in the validation data set. Overall, the 

fingerprinting technique generates a large number of false alarms for Mumbai and, hence, is 

not implementable. There are few discrepancies in the method-ology which may impede in the 

exact prediction of extreme events. Fingerprinting calculates α and φ metrics on the basis of 

extreme departure from the normal; only peak and valley anomalies are considered. These 

peaks and valleys may occur on any of the non-extreme days which are not verified. The model 

is calibrated only with the extreme events, and it may be possible that the PP/SP/PV/SVs may 

also correspond to the non-extreme days. As the model is not calibrated with the non-extreme 

events, it fails to predict correctly non-extreme days. Hence, there is a need to use the 

appropriate model for the prediction of extreme events using appropriate predictors, which may 

be identified not by the positions of PP or PV, but by careful investigations of weather patterns 

before not only extreme events, but also before non- extreme events. 

 
Table 5-4 Individual score of most important predictors 

Climate variable Peak type Score 

   

Before 36 h 

   

AirTemprature_Surface PV 0.368948781 

PPWTR_Surface PV 0.553225719 

PPWTR_850-hPa SV 0.418404224 

MSLP_Surface PP 0.437826703 

MSLP_850-hPa SV 0.372663564 

U-Wind_850-hPa PV 1.049401092 

U-Wind_Surface SV 1.38020148 

V-Wind_Surface PV 0.930699221 

Table 5-4 continued 

   

V-Wind_Surface SV 0.804723383 
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Rhum_850 PP 0.970292614 

Rhum_850 

 

SV 

 

0.559064671 

 

Before 24 h 

   

V-Wind_850-hPa PP 0.8959578 

V-Wind_Surface SP 0.7590087 

V-Wind_Surface SV 0.6059619 

U-Wind_850-hPa SP 0.8815831 

Rhum_600-hPa SP 0.666301 

PPWTR_850-hPa PV 0.5365885 

PPWTR_Surface SP 0.7146289 

PPWTR_850-hPa SV 0.5558639 

 

Before 12 h 

   

PPWTR_Surface PV 0.5655226 

MSLP_Surface PV 0.4558538 

MSLP_Surface SV 0.5158948 

U-Wind_850-hPa PV 1.4429308 

U-Wind_850 SV 1.093575 

V-Wind_Surface PV 0.7093148 

V-Wind_Surface SV 0.8882968 

 

Before 6 h 

   

V-Wind_Surface PP 0.67595 

V-Wind_Surface PV 0.8117482 

V-Wind_Surface SP 0.8504578 

V-Wind_850 SV 1.1930083 

U-Wind_850 SP 0.7988597 

MSLP_Surface PP 0.4927509 

MSLP_Surface SP 0.5385422 

PPWTR_850 SP 0.6103919 
   

 

5.5.2 Feature extraction through AFM 

 

Anomaly frequency of all the variables at all the grid points for time instances of 84 to 6 h at 

6-h interval before the extreme event occurrence is carried out to determine the variables and 

grid points which can be the potential weather features that cause extreme events. Using 50 

extreme events for calculating anomaly frequency at each grid point for all variables, it is found 

that some variables had a maximum frequency of around 32 consistently. Having a frequency 

of 32 for a variable on a grid point at some time instant implies that, out of 50 extreme events, 

anomalous behavior of the variable is related to only 32 extreme events; the variable does not 

show any anomalous behavior before the remaining 18 extreme events. Since this happens with 
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many variables, an investigation is carried out to determine which anomalies are related to 

which (32 out of 50) events. Interestingly, it is observed that the 32 events, which are related 

with positive or negative anomaly of different variables on a grid point at some time instance, 

are the same. It is also observed that the rest of the events are related with anomalies of the 

same variables but at some other time instances and the anomalies types may be the same or 

different. Also, it is observed that the first 32 events occurred in the nighttime (0600–1800Z), 

whereas the last 18 events occurred in the daytime (1800–0600Z). Now onwards, the 32 and 

18 events are named as nighttime and daytime events, respectively. Table 5.5 shows the 

variables which have different anomaly types (positive and negative) during night events and 

during day events at different time instances on the same grid point. 

Table 5-5 Variables having different anomaly types at different time instants before the event 

S. no. Variable Level 

Grid 

point 

(GP) 

Hours before 

event Anomaly type 

Hours before 

event 

Anomaly 

type 

    

(night 

events) (night events) (day events) 

(day 

events) 

        

1 

Air 

temperature 

Surface 

level 90 72 Negative 72 Positive 

2 

Air 

temperature 850-hPa 70 12 Positive 48 Positive 

3 

Air 

temperature 850-hPa 90 24 Negative 24 Positive 

4 

Air 

temperature 850-hPa 105 24 Negative 24 Positive 

 Table 5  continued      

5 Rhum 

Surface 

level 54 24 Positive 6 Positive 

6 Rhum 850-hPa 54 48 Positive 6 Positive 

7 U-wind 

Surface 

level 50 24 Negative 78 Negative 

8 U-wind 

Surface 

level 3 72 Negative 78 Negative 

9 V-wind 

Surface 

level 24 84 Negative 84 Positive 
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10 V-wind 850-hPa 29 24 Positive 24 Negative 

 

 

From Table 5.5, it can be observed that air temperature at the surface level has a negative 

anomalous value at 72 h before the event at GP90 during night events, and it has a positive 

anomalous value during day events. Similarly, air temperature at the 850-hPa level on GP90 

and GP105, V-wind at the 850-hPa level at GP24, and V-wind at the 850-hPa level at GP29 

have contrasting anomalies during night events and day events. Analyzing the table provides 

very important information which the fingerprinting method could not capture: there are two 

weather patterns which cause extreme rains over Mumbai- one that is associated with night 

events and the second that is associated with day events. 

 

All the atmospheric variables are analyzed using the anomaly frequency technique, and the 

variables with high frequency (more than 23 out of 32 and more than 12 out of 18) are selected 

as features of extreme events; for example, air temperature at the surface level on GP90 before 

72 h of the extreme event having a frequency of more than 23 is a feature of night extreme 

events. These features are identified at all the four atmospheric levels considered in the study. 

The temporal variation of features having a frequency of more than 30 (out of 32) and 16 (out 

of 18) is analyzed. Figure 5.6(a) shows the median temporal variation of surface level air 

temperature on GP92 during night events. 

 

Frequency of positive anomalies of air temperature at GP92 before 12 and 36 h is 32, i.e., all 

the night extreme events have positive anomalous temperature at GP92 be-fore 12 and 36 h of 

the event. Figure 6b shows the shaded contours of air temperature before 12 h of the extreme 

event which occurred late night 21 July 1977. In figure 5.6(b), the arrow mark shows the 

location of GP92 for which the temporal variation is shown in figure 5.6(a). GP92 and 

surrounding regions have a high temperature before 12 h of the event. Omega- vertical wind 

velocity has high frequency at many grid points, hence provides features of extreme events. 

Figure 6c shows the temporal variation of the 850-hPa level omega on GP25 12 h before the 

night extreme events. The frequency of negative anomaly of the 850-hPa level omega on GP25 

before 60 h of extreme event is 31. Conditions are similar at GP39. Figure 6d shows the shaded 

contour map of omega before 12 h of the previously mentioned extreme event. The arrow mark 

shows GP25 for which the temporal variation is shown in Fig. 6c. The frequency of negative 

anomaly of the 850-hPa V-wind on GP25 before 60 and 84 h of the events is 31 and 30, 



95 

 

respectively. Similar conditions are observed at GP24 and GP26. Figure 6f shows the shaded 

contour map of V-wind before 12 h of the previously mentioned extreme event. The arrow 

mark shows GP25 for which the temporal variation is shown in Fig. 6e. It is interesting to note 

that the climate variables at GP24 and GP26 are also among the features of extreme events. 

GP25 lies in the Tibetan range, which has a considerable impact on southwest monsoons (Flohn 

1968). U-wind speed, which is more than 10 m/s at these locations, may provide some link 

between heavy rains over Mumbai and Tibetan mountains. 

 

As mentioned earlier, the weather patterns responsible for the extreme events during the 

night is quite different from that during the day. This is evident from figure 5.7. One reason 

may be diurnal temperature variation which affects the process. Hence, a similar analysis with 

AFM is performed for the extreme events during the day for predictor identification. The 

frequency of positive anomaly of surface level air temperature on GP89 before 72 and 48 h is 

16 out of 18 day events. The frequency of negative anomaly of surface level air temperature 

on GP9 before 72 and 48 h is 16. 

 

AFM is applied to other derived atmospheric variables which have a significant contribution 

in extreme event occurrence (Joseph 2006). It is interesting to note that there are certain 

variables which have significantly high anomaly values at the neighboring locations of Mumbai 

before extreme events, irrespective of their timing (day or night). These variables include zonal 

wind shear and vorticity. Figure 5.8 (a–c) shows that vorticity patterns around Mumbai before 

the extreme event during both the daytime and night-time are similar, but quite significantly 

different from the normal condition. Figure 5.8(d) shows the frequency of positive anomalies 

of vorticity at the 850-hPa level over all 225 grid points. 

 

From figure 5.8(d), it is observed that GP141 has a highest frequency of 41 which implies 

that 41 events out of a total of 50 show a positive anomalous behavior of the 850-hPa level 

vorticity on GP141 at 6 h before the event. It can also be observed that grid points GP123 to 

GP126 and GP138 to GP141 have a frequency near 35 at 6 h before the event; these grid points 

are around Mumbai, which suggests that, during extreme events, the regions around Mumbai 

are having very high vorticity before 6 h. Similarly, AFM is applied to analyze zonal wind 

shear all over 225 grid points; it is observed that zonal wind shear has a high frequency of 

positive anomalies at GP126 and GP141 before 6 h of the extreme event. Figure 8e shows the 

temporal variation of vorticity around Mumbai (GP123 to GP126 and GP138 to GP141). It is 
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evident that the increase of the 850-hPa vorticity is mild till 18 h before the event, but after that 

it becomes steep. Vorticity is always much higher than the climatological mean (blue line). 

Similar results are also obtained for zonal wind shear at 850 hPa. 
 

Both vorticity and zonal wind shear at the 850-hPa level have high anomalous values 

during almost all the 50 events before 6 h of the event. These also form important features 

of extreme rainfall events. After identifying the features of extreme events, the SVM 

classifier is used for training. 
 
 

Figure 5.6 Key predictors used in SVM for predicting extreme events during night 

(a) air temperature variation at grid point 92 (GP92) before the extreme event (green) and during normal 

condition (blue); (b) arrow shows the location of GP92 with the spatial variation of air tempera-ture, 

(c) omega (at 850 hPa) variation at GP25 with an arrow showing its location in (d); (e) 850 hPa V-wind 

variation at GP25, with an arrow showing its location in (f) 
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To start the AFM, all the available variables from the NCEP/NCAR reanalysis project are 

considered. It is observed from the results that few of the atmospheric variables contribute to 

the extreme weather patterns, and the most critical variables are presented in Table 5.5. They 

are mostly air temperature, humidity, U-wind, and V-wind. A possible physical explanation 

could be that temperature differences (high anomaly temperature in a region) may result in the 

formation of low-pressure zone which causes high wind velocity with moisture (commonly 

known as vertically integrated moisture content [VIMT]). It is observed in the literature 

(Fasullo and Webster 2003; Konwar et al. 2012) that VIMT is highly associated with Indian 

rainfall and the variables responsible for high VIMT are actually identified by the AFM. 
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Figure 5.7 Different weather patterns before extreme events during the day and night  

(a, b) air temperature, (c, d) omega at 850 hPa 
 

 

5.5.3 Two-phase SVM results 

 

Trial and error is performed to select the best SVM parameter, viz., kernel functions, the sigma 

value (similar to band width) of the radial basis kernel function used, etc. Initially, training of 

the SVM classification models is performed using the values of all the features (having a 

frequency more than 23 for SVM1 and having a frequency more than 12 for SVM2). Validation 

of the models is carried out for all the instances in the validation period 2000–2008. The 

validation results show poor performance for the best model obtained with trial and error: out 

of 4,392 instances, around 1,000 are predicted as extremes where in actual only 16 instances 

are extremes; this prediction is not acceptable. Also, there are very few extremes which are 

predicted with lag of 6 h or more. 
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Figure 5.8 Vorticity around Mumbai with similar spatial pattern before extreme events  

During both night (b) and day (c), which are different from normal condition (a). (e) Frequency of 

positive anomaly of 850 hPa vorticity, at different grid points, 6 h before the extreme events, 50 extreme 
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events are considered for this. (f) Median temporal variation of 850 hPa vorticity at neighboring regions 

of Mumbai during all (day + night) extremes (green) and non-extreme (blue) 

 

The reasons behind such poor performance may be: out of all features, few have a high potential 

triggering extreme event and the rests have a lesser potential for extremes. Furthermore, some 

features might not be too different from non-extremes to be differentiated by SVM. To cope 

up with the first caveat, we assume that features with high frequency are better predictors than 

features with low frequency, and hence, we introduce a weighting factor to the feature matrix 

for prediction depending on the frequency. The weights to the features are assigned between 0 

and 1 depending on the frequency. The higher the frequency of the feature, the higher is its 

weight. The summation of weights of all features is equal to 1. Using weighed features, the hit 

and trial method is applied to arrive at the best possible model. Classification is improved 

considerably using weighed features; out of 4,392, 424 events, as compared with the 1,000 in 

the first case, are classified as extremes. Also, only two events are predicted 12 h ahead; 

however, the classification performance is still not satisfactory. From the results obtained with 

the two experiments, it is assumed that feature values of extremes and feature values of non-

extremes may not have enough difference that SVM models can discern. This is also observed 

in figures comparing extremes and normal weather. The differences are small for some 

predictor variables, such as 850 hPa omega at GP25, although it is statistically significant at 

the 1 % level. This difference, even though statistically significant, may not be very well 

captured by the SVM models. One possible reason may be that these values may be similar to 

the outliers for non-extreme cases and the soft margin fails to classify them. Since the intuition 

of SVM for finding maximal hyper plane (training) is geometric (Boswell 2002), it may be 

possible that scaling the feature values of extremes and non-extremes may provide better 

classification. The difference between the variable values and anomaly threshold are taken to 

constitute a new feature vector instead of raw features. Equation 13 calculates the difference 

between threshold and raw feature value: 

𝒇 = 𝒙 − 𝜹±                                                                13 

where f is the new feature value, x is the raw feature values, i.e., the value of atmospheric 

variable corresponding to feature, and δ± is the positive or negative anomaly threshold. 
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Table 5-6 SVM1 (night events training) training with different frequencies 

Frequen

cy Total events 

Actual extremes 

predicted SVM1 

 predicted in testing perioda kernel used 

    

23 459 3 Linear 
24 547 4 Linear 
25 460 3 RBF 

26 307 6 RBF 

27 252 7 RBF 

28 108 10 RBF 

29 67 12 RBF 

30 210 9 RBF 

31 1,002 12 RBF 

32 1,072 8 RBF 
 
a Actual number of night extreme events in validation/testing period is 12 
 
 
 
Table 5-7 SVM2 (day events training) training with different frequencies 

Frequen

cy Total events 

Actual extremes 

predicted SVM2 kernel 

 predicted in testing perioda used 

    

12 650 7 Linear 

13 178 5 Linear 

14 82 4 Quad 

15 122 6 RBF 

16 245 9 RBF 
 
a Actual number of day extreme events in validation/testing period is 4 

 

Using the feature obtained from Eq. 13, experiments are performed to determine which 

feature will provide the best results. All the features (having a frequency of 23 to 32 for SVM1 

and 12 to 18 for SVM2) are used to compute the optimum frequency for best prediction 

performance. Table 5.6 shows the classification performance of best SVM1 models using 

features of different frequencies. Table 5.7 shows the classification performance of the best 

SVM2 models using features of different frequencies. It is observed from Table 5.6 that the 

SVM1 model, trained with the feature values corresponding to frequencies of more than 29, 

provides the best result—67 predictions in total, 12 being the actual extremes. Similarly, from 

Table 5.7, it is observed that the SVM2 model, trained with feature values corresponding to 

frequencies of more than 14, provided the best result—82 predictions in total, 4 being the actual 
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extremes. The details of best (final) SVM models (as obtained with trial and error) are presented 

in Table 5.8. It is observed that, when the support vectors are further analyzed, for SVM1, all 

extreme features are support vectors which give an indication that further improvement is 

required in feature extraction for better classification of rare events using SVMs. 

A total of 133 non-extremes are predicted as extremes. Prediction of 149 (133 non-

extremes+16 extremes) events as extreme events is quite satisfactory as compared with 

fingerprinting technique prediction which predicted 908 events as extremes. Large numbers of 

consecutive instances (which are non-extremes) are predicted as extremes in fingerprinting 

techniques, whereas such limitation is not observed in the present method for most of the cases. 

The average rainfall during the extremes predicted using the fingerprinting technique is 4.50 

mm per instance (6 h), whereas average rainfall during extremes predicted through the two-

phase SVM is 20 mm per instance (6 h). These results suggest that the present two-phase SV 

classifier is modeling extremes much better than the fingerprinting technique. These results are 

encouraging towards predicting extreme rainfall through weather pattern recognition. The 

results may be further improved with the use of high-resolution weather data (predictors) as 

well as Doppler radar data. Development of proper data assimilation techniques with fine-

resolution data from multiple sources and using them in fine-resolution urban extreme weather 

prediction is a potential research area and may be considered as the future scope of the present 

work. 

It should be noted that the region for predictors are selected arbitrarily. The region selected 

is significantly large with a primary assumption that the AFM will select the critical grids. We 

also perform another experiment, where we consider a larger region, not only considering just 

the subcontinent but also the entire Arabian Sea (−2.5° to 45° N and 55° to 102.5° E) and redo 

the same analysis. Almost similar set of variables are identified as key predictors, with slightly 

different critical locations, and it reduces the number of false alarms; however, it fails to 

generate the alarm for an extreme event. This is probably because the weather patterns 

responsible for this specific event get lesser weight for considering higher area and, hence, are 

not participating in SVM. A comparison of results for both regions is presented in Table 9. 

The other limitation of the model results from the avail-ability of the data. The length of the 

data used for the present analysis is 1979–2008, 40 years data. As the occurrences of extremes 

are rare, it limits the use of a significantly long data set for validation, as for the training and 

development of a model, a good number of extremes is required. Due to the same reason, only 

16 extremes could be used for validation, out of which 4 belongs to daytime events derived 

with SVM-2. Validation of the model with four extremes may not provide a clear picture on 



103 

 

model performance; however, if we increase the validation period, it will result to a training 

data set with <10 number of daytime extreme events, which may result in an inaccurate model. 

Also, it is a common practice in hydroclimatology to use a minimum of 30 years as baseline 

(Wilby et al. 2004; Dibike and Coulibaly 2005) or training data set for a model and the same 

is used here. To check the model performance with shorter length training data set, the entire 

data set is divided into two equal halves, 50 % for training and 50 % for validation. For the 

new set, it is observed that, out of 33 extreme events in validation, 26 are predicted, and this 

may be because not all types of extremes in training (with less training data) were considered. 

 

Table 5-8 Best SVM architecture 

 

     

     

 SVM1  SVM2  

      

 Kernel function RBF Kernel function Quadratic 

     

 Kernel function argument (sigma)     0.8900 Bias 0.9489 

 Bias     0.3999 Support vectors 45×4 

 Support vectors 48×32 Optimization method SMO 
       

 

 
Table 5-9 Sensitivity of selection of regions for predictors 

Region for predictors Total no. of No. of actual Total No. of actual False Actual extremes 

 instances in extreme in 
number of 
extremes 

extremes 
predicted alarms predicted as 

 

validation 

period 

validation 

period predicted as extremes  non-extremes 

 (2000–2008)        

         

Indian subcontinent 4,392 16 

1

4

9 16 133 0   

Arabian Sea + Indian 

subcontinent 4,392 16 

6

2 15 47 1   

         

 

5.6 Summary and concluding remarks 

 

The hypothesis for the prediction of extreme rainfall events is that the weather pattern(s) 

causing extreme rainfall are entirely different from the normal weather days. Weather patterns 

associated with past extreme events are identified using pattern recognition techniques. Based 

on the resemblance of a future day weather pattern with that of extreme events, the future day 



104 

 

weather is predicted as extreme or non-extreme. The fingerprinting technique is used to predict 

six-hourly extreme rainfall events over Colaba station, Mumbai. Highly anomalous U-wind 

and V-wind around Mumbai and low-pressure regions near the northwest Bay of Bengal are 

identified to be the most important variables in producing extreme rains over Mumbai. 

Although the finger-printing method does well to predict all 16 extreme events in the validation 

period (4,392 instances), more than 900 non-extreme instances are predicted as extreme events. 

Hence, the use of the fingerprinting technique to predict extreme rainfall events over Mumbai 

in the future may be misleading. There may be many reasons for the poor performance of the 

fingerprinting technique in predicting rainfall events over Mumbai, the most appropriate are as 

follows: (1) the fingerprinting method is calibrated for extreme days only and (2) fingerprinting 

identifies only one weather pattern corresponding to extreme events and Mumbai has two 

weather patterns responsible for causing extreme rains. Identifying two weather patterns is 

possible using respective events as training instances for fingerprinting, but there is a 

disadvantage that the training data sets will be small for both of the weather patterns, hence 

results will be highly uncertain given that the method employs only extremes for calibration. 

AFM is developed in the present study to determine the variables and the grid points which are 

consistently being affected during extreme rainfalls over Mumbai. AFM is applied on past 50 

extreme rainfall events over Mumbai to extract the features of extreme rainfall events over 

Mumbai. It is observed that, during night events, temperature is higher than normal before 12 

h of extreme event in region near 25° N, 67.5° E. Negatively anomalous 850-hPa omega before 

60 h and positive anomalous surface level U-wind and V-wind before 12 h of extreme events 

around the Tibetan plateau are also identified to be critical in triggering extreme rainfall events 

over Mumbai. During almost all the extreme events, it is observed that vorticity and zonal wind 

shear around Mumbai start increasing from 84 h before the event and reach their peaks just 

before event occurrence; hence, it is asserted that steep increase in vorticity and zonal wind 

shear, especially at lower atmospheric levels, over Mumbai is a precursor of extreme event. It 

is concluded that Mumbai extremes are not caused by exceptional variation of a single 

atmospheric variable but different atmospheric variables get altered and interact in a complex 

manner to trigger short-term extreme rains over Mumbai. AFM yields an important conclusion 

that there are two weather patterns causing extreme rainfalls over Mumbai. In this context, a 

two-phase SVM is developed in this present study. SVM is not able to classify extremes and 

non-extreme by using mere variable values as features matrix for training, even though the 

features of extremes and non-extremes are different with a high level of statistical significance, 

hence weighing and scaling the features is sought to provide better classification. Based on the 
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hit and trial method of training applied to weighed and scaled features, a best two-phase SVM 

is formulated, which predicts a total of 149 extreme events in the validation period out of which 

16 are actually extreme. The two-phase SVM model shows a significant improvement over the 

finger-printing technique in predicting extreme events over Mumbai; however, there is still a 

good number of false alarms. This may be improved with the use of high-resolution weather 

pattern or with the use of Doppler radar data. Statistical development of a rare event classifier 

may also improve the performance. However, the use of multiple data may need proper data 

assimilation techniques, which should be further coupled with the event classifier. The quality 

of reanalysis data for extreme events is also another major factor, which affects the 

performance. 

 

It should be noted that fine-resolution atmospheric models may provide better estimates with 

less number of false alarms. However, due to the unavailability of fine-resolution 

observed/reanalysis data, the coarse-resolution data is used. A possible alternative option may 

be the use of fine-resolution Climate Forecast System Reanalysis da-ta set 

(http://rda.ucar.edu/pub/cfsr.html), but the data is not available for the entire 40 years. Further 

reduction of data length will seriously affect the model performance and hence is not practiced 

for the present analysis. 

 

  



106 

 

Chapter 6  : COUPLED IMPACTS OF CLIMATE CHANGE AND 

URBANIZATION ON EXTREME RAINFALL IN MUMBAI 
 

6.1 .Introduction 

 

The intensity and frequency of extreme rainfall events are reported to increase over the most 

parts of the world (Alexender et al 2006). The probability of extreme precipitation events is 

increased by a factor of about 2 by the end of the 21st century (Kharin and Zweirs (2004; 2007). 

These changes largely associated with changes in location over most of the globe Kharin et al 

(2013). The increase in annual maximum daily rainfall intensity was further estimated to occur 

at a higher rate in tropics and high latitudes of Northern hemisphere (Groisman et al 2005). 

The longer time scale output from General Circulation Models (GCMs) also suggests the 

intensification of extreme rainfall events with global warming (Meehl et al 2007). At the same 

time the very large intermodal disagreement in the tropics suggests that dome physical 

processes associated with extreme precipitation are not well represented in the models (Kharin 

and Zweirs, 2007). Overall the sensitivity of precipitation extremes to a warming climate 

remains uncertain with important regional variations (O'Gorman 2015). This highlights the 

need of observations and simulations of the physical factors that govern the precipitation 

extremes.  

Though with these realizations of the importance to understand the occurrences of extreme 

rainfall events from both scientific and impact cantered perspective, studies resolving the 

physical processes that cause sub daily extremes are scarce (Wakazuki et al 2008; Kendon et 

al 2010). A complete depiction of how sub daily extreme rainfall might change in the future 

remains unresolved (Boucher et al 2013; Collins et al 2013). The theoretical basis of extreme 

rainfall increases with that of air temperature can be explained using Clausis and Clapeyron 

(CC) theory.  As temperature increases the intensity of extreme rainfall increases as warmer 

air capable of holding more water and has the potential to provide more moisture to rainfall 

events (Trenborth et al 2003). Though the moisture availability does not increase endlessly 

with temperature and may limit the extreme rainfall intensification above a specific 

temperature threshold. On the global scale the atmosphere energy balance sets a limit to mean 

precipitation change by 1-3% per degree global average surface temperature (Westra et al 

2014).  

Climate modeling studies have difficulty in resolving the processes that cause short duration 

rainfall extremes while simultaneously modeling the large scale conditions in which local 
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extreme rainfall events are embedded (Westra et al 2014). Limited number of studies which 

indicate sub daily extremes to increase is due to increases in air temperature (Lenderik and Van 

Mejigard , 2008).  

The first formal detection of human influence on observed daily extreme rainfall intensification 

was provided by Min et al (2011). In this study the human-induced increases in greenhouse 

gases have contributed to the observed intensification of heavy precipitation events over 

approximately two-thirds of data-covered parts of Northern Hemisphere land areas (Min et al 

2011). Significant amount evidence exists that links specific extreme weather events to 

anthropogenic characteristics is continuing to build up (Coumou and Rahmstorf, 2012; Min et 

al 2011). The evidences are obtained for sub-daily extreme rainfall intensification due to 

anthropogenic activities and increases in extremes with rise in atmospheric temperature 

(Westra et al 2014).  

Regional climate models (RCMs) provide higher-resolution climate projections that partially 

resolve finer scale variability associated with topography and land cover and hence are 

increasingly being used in studies aimed at helping society adapt to climate change (Salathé et 

al., 2010). The extreme rainfall events simulated by RCMs (Regional Climate Models) may be 

more reliable due to better representation of smaller-scale topographic features and physical 

processes (Gutowski et al., 2010; Leung et al., 2004). However, these studies remain scarce 

underlying the huge computational requirements (Wakazuki et al 2008; Kendon et al 2010). 

Various local, regional and continental level studies are undertaken the projected changes in 

occurrences of extreme rainfall events. The selected return levels were obtained over the 

Canada (Mladjic et al 2001); the impact of future climate change on ISMR (Rajendran and 

Kitoh 2008), North American Regional Climate Change Assessment Program (NARCCAP) 

(Gutowski et al 2010, Mishra et al 2012) over Europe (Deque et al 2007) , UK (Fowler and 

Wilby 2010) are to name a few.  

Several studies investigate the occurrence extreme events with a statistical modeling approach. 

Washington Luiz Félix Correia Filho et al (2014) diagnosed the extremes over Northeast Brazil 

(NEB) with application of statistical model and observed the maximum temperature, zonal 

wind component, evaporation, specific humidity and RH having profound influence on 

precipitation extremes. More importantly the undergoing the higher inter-annual variability and 

the factors confounding the same, detection of anthropogenic climate change at regional scale 

is difficult. The changes and uncertainties in extreme precipitation using three statistical models 

(Sunyer et al 2015). 
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Several studies pertaining to Indian summer monsoon rainfall extremes reported in the 

literature. For instance Goswami et al 2006 reported significant rising trends in the frequency 

and the magnitude of extreme rain events and a significant decreasing trend in the frequency 

of moderate events over central India during the monsoon seasons from 1951 to 2000. Rajeevan 

et al (2008)  supported the hypothesis that the increasing trend of extreme rainfall events in the 

last five decades could be associated with the increasing trend of sea surface temperatures and 

surface latent heat flux over the tropical Indian Ocean.  

A significantly increasing trend in the frequency of heavy rainfall climatology over urban 

regions of India during the monsoon season, adding that urban regions experience less 

occurrences of light rainfall and significantly higher occurrences of intense precipitation 

compared to non-urban regions (Kishtawal et al. 2010). The trends are further observed to lack 

of uniformity in occurrences but increasing spatial variability over rainfall extremes (Ghosh et 

al 2011).  

The changes in extreme rainfall characteristics estimated in terms of intensity, duration and 

frequency of extreme rainfall is reported to exhibit a non-stationarity due to different drivers 

and spatially non-uniform pattern is observed in the changes over India (Mondal and Mujumdar 

2015). Projections of precipitation extremes over India, obtained with a state-of-art regional 

climate modeling system, PRECIS (Providing REgional Climates for Impacts Studies) reveals 

marked increase in precipitation towards the end of the 21st century under scenarios of 

increasing greenhouse gas concentration and sulphate aerosols. The experimentations over 

PRECIS also observed the changes in terms of a shift in extreme precipitation and dry spells 

with a substantial increase in the spread having an increased probability of occurrence of both 

floods and drought events (Rao et al 2013). 

 

6.2 Motivation and Objectives 

 

Different studies highlighted the need for systematic examination of global versus regional 

drivers of trend in Indian rainfall extremes for flood hazard preparedness and water resource 

management. The understanding of influence of urban signature on extreme rainfall on two 

locations Mumbai and Alibag reveal the sensitivity of extreme rainfall events to the increased 

urbanization (Shastri et al 2014). This study is undertaken as to observe the changes in 

projection of rainfall extremes corresponding to the development of urbanization. However, 

these observational studies remain computationally expensive to apply for a longer time period. 
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We propose an integration of statistical and dynamical downscaling methodology to include 

the feedback from urban expansions on the occurrence of extreme rainfall.  

 

 6.3 Statistical Downscaling 

 

The statistical models are based on statistical relationships between large scale climate features 

and hydrologic variables. It is assumed that the statistical relation developed during historical 

period and the same relation is also valid for the future.  

 As mentioned, the main shortcomings of the dynamic downscaling are that RCMs still require 

considerable computing resources and are as expensive to run as global GCMs themselves; 

these models still cannot meet the needs of spatially explicit models of ecosystems or 

hydrological systems and that there will be the need to downscale the results from such 

dynamic downscaling models to individual sites or localities for impact studies (Wilby and 

Wigley, 1997). Moreover, dynamic downscaling is inflexible in the sense that expanding the 

region or moving to a slightly different region requires redoing the entire experiment (Crane 

and Hewitson, 1998). However, the 'Statistical Downscaling' techniques are computationally 

easy and the efficiency of results of statistical downscaling are comparable with 'Dynamic 

Downscaling' techniques ( Schoof, 2013). 

6.3.1 Data Used 

The statistical downscaling procedure utilizes three preliminary datasets namely: the Observed 

Rainfall data, Climate reanalysis data, GCM data. 

The observed rainfall data at a daily resolution for the station Santacruz Mumbai from 1979-

2007 is obtained from India Meterological Department (IMD). 

The selection of predictor data set plays important role in the performance of the statistical 

downscaling model. It is broadly assumed that the predictors directly affect rainfall process. 

Predictors should be so chosen such that in the climate change context the predictors essentially 

capture effect of global warming. Humidity plays an important role in capturing changes in 

water holding capacity of atmosphere under global warming (Wilby and Wigley 1997). 

Temperature , U wind , V wind, Mean sea level pressure (MSLP) add considerable power to 

predict short and long term changes in precipitation. The predictors selected for this analysis 

are air temperature, wind velocities (U and V wind), mean sea level pressure, specific humidity 
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at surface level. In addition to this the 500 & 850 hPa level U and V wind velocities are included 

as predictors. 

The selected predictor data is obtained from NCEP-NCAR reanalysis and GCM data sets. 

6.3.1.1 NCEP-NCAR Reanalysis data 

Reanalysis data is surrogate for observed data for any predictor variable. The NCEP-NCAR 

Reanalysis data set is a continually updating gridded data set representing the state of the 

Earth's atmosphere, incorporating observations and numerical weather prediction (NWP) 

model output dating back to 1948. It is a joint product from the National Centers for 

Environmental Prediction (NCEP) and the National Center for Atmospheric Research 

(NCAR), NOAA. For the current projections, the reanalysis data was downloaded. The 

resolution is 2.5º lat × 2.5º long. The base line period considered for the present study is from 

1961-2000 which is of sufficient duration to establish a reliable climatology (Ghosh and 

Mujumdar 2008). The NCEP/NCAR reanalysis-I data (Kalnay et al., 1996) provide global 

atmospheric data which is a mixture of physical observations and model forecasts. Kalnay et 

al., 1996  have used different data assimilated systems such as global raw aircraft data, satellite 

data, and surface land synoptic data, advanced microwave surface wind speed data etc. to with 

a T62 resolution and 28 vertical sigma levels to calculate the reanalysis data products for 

various climate variables. The data is available form 

http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html. 

6.3.1.2 GCM  data 

 

The original GCM (General Circulation Models) outputs of precipitation as well as the 

simulations for predictors are obtained from Program for Climate Model Diagnosis and 

Intercomparison (PCMDI). The present analysis projection is performed with the 5 selected 

GCMs are as listed with Table 6.1. 

The future scenarios considered for this analysis are (Representative concentration pathways) 

RCP 4.5 and RCP 8.5. Both the scenarios are considered as worst case scenarios for the 

respective generations of models. The future period considered for this analysis is 2030-2050 

and the projected changes are computed with respect to the base line period 1969-2005. 

 

 

 

http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html
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Table 6-1 GCMS used in the present study 

Sr.No Short name PROJECT 

1 GFDL GFDL –ESM2 Geophysical Fluid Dynamics Laboratory 

2 CNRM CNRM-CM5 Centre National de Recherches 

Meteorologiques  

3 MRI MRI-CGCM3 Meteorological Research Institute 

4 CCCma CanESM2 Canadian Centre for Climate Modelling 

and Analysis 

6.3.2 Methodology 

With the statistical downscaling methodology the coarse-resolution predictors are linked to the 

fine-resolution predictand using a statistical relationship. The flow diagram for  stepwise 

mathematical operations performed on the data for the rainfall projections are given with figure 

6.1.  

 

Figure 6.1 Flow diagram describing Statistical Downscaling Methodology 
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The GCM-simulated predictors and the observed rainfall, as a predictand, undergo different 

mathematical operations before actually becoming statistically linked. The predictors undergo 

a bias correction operation where the systematic error is removed using a quantile-based 

remapping technique (Li et al., 2010). The bias-corrected predictors go through PCA that 

involves the application of orthogonal transformation on a set of correlated predictor variables, 

producing principal components. The resulting principal components are dimensionally 

reduced and uncorrelated to one another. Principal components carry almost the same 

variability as that of the original data. Hence, the PCA helps to reduce both dimensionality and 

multicollinearity. A reduction in the dimensions also results in a reduction in the computational 

effort. 

The daily observed rainfall data and the bias-corrected predictors, which all undergo principal 

component analysis, are key inputs to the regression model for establishing the statistical 

relationship for the training period. Assuming that the relationship holds for the future, 

projection are generated; with the help of pre-established relationships and predictors for the 

future period. By applying liner regression, rainfall is projected for the city of Mumbai. For the 

model validations, the projections are obtained using NCEP/NCAR reanalysis climate 

variables as predictors. The period 1969–1984 is the time slice considered as the training period 

for which the statistical relationship is established. The period from 1985–2007 is the time slice 

considered as the validation period for which projections are obtained and compared with the 

observed rainfall data for the same time period. The 20th century projections are obtained from 

the historic GCM data for the time period slice 1969–2005. Future projections are obtained 

from the same GCM for the time period from 2030–2050. The future projection for two 

different scenarios namely RCP 4.5 and RCP 8.5 are calculated.  

 

6.4 Dynamic Downscaling 

 

Dynamic downscaling leads to the development of finer-scale physics-based models known as 

regional climate models (RCMs) that take input from GCMs’ simulations as initial and 

boundary conditions, incorporate the subgrid features, and produce very high resolution results. 

Using various RCMs, dynamic downscaling has been attempted successfully for rainfall 

projections. The methodology has a major limitation of being highly computationally 

expensive. Here we perform a limited WRF-LSM runs over the city of Mumbai. 
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6.4.1 Data Used 

The dynamic downscaling methodology utilizes two main datasets namely climate data and 

urbanization development data.  

6.4.1.1 Climate data 

Initial conditions are provided by European Centre for Medium-range Weather Forecasts 

(ECMWF) reanalysis or ERA-I data (Dee et al., 2011). The six-hourly outputs (00, 06, 12, 18 

UTC) at 0.75°×0.75° horizontal resolution over 30 pressure levels are used for this experiment. 

Characterization of land surface, which acts as a bottom boundary condition for the coupled 

model, is an important step towards simulating the Urban Boundary Layer (UBL). We use 

MODIS land use data set for this study. The coarse domain consists of 74x93 spatial matrix, 

whereas the domain of interest has a 232x304 mesh covering the Mumbai metropolitan and 

Alibaug with 4 km horizontal grid spacing. 

6.4.1.2 Land use land cover data 

The urban agglomeration of Mumbai is one of the largest and fastest-growing urban regions in 

the world, and this growth has unprecedented effects on urban sprawl and population dynamics 

(Chakrabarti, 2001; United Nations, 2012). Here, we explicitly addressed the simulation of 

future urban growth patterns of Mumbai with the dynamic downscaling model. Here we adopt 

the maps generated by Hossain and Marco; 2013. The prevailing dynamism, of spatiotemporal 

variation with the landuse mapping conducted over the years 1973 and 2001. The classified 

urban maps show clear urban expansion and demonstrate that urban growth dynamics are 

strongly linked to population dynamics. The urban growth modeling is applied to develop an 

understanding of booming and vital spatial developments in Mumbai. The temporal mapping 

of built-up areas and the simulations for 2050 indicate that the projected urban expansion 

occurring between built-up areas and open land and croplands. Here we consider that the 

regulatory protection takes into account environmental considerations for reserved areas 

around the Sanjay Gandhi National Park as well as the wetlands around the city. This analysis 

supports predictions by Taubenböck et al. (2012), who anticipated the emergence of satellite 

towns. The urban maps obtained for the year 1973, 2001 and 2050 are shown in the figure 6.2. 
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Figure 6.2 Land use map of the city of Mumbai. 

6.4.2 Methodology 

 

WRF version 3.6 is used for this study. WRF is a non-hydrostatic terrain mesoscale model 

(Skamarock and Klemp 2008), used widely for both operational forecast and climate research. 

The simulations are performed over Mumbai metropolitan area using three nested domains 

with horizontal grid resolutions of 36 km (d01), 12 km (d02) and 4 km (d03) respectively 

(figure 6.3). 

 

Figure 6.3 Configuration of the WRF model domains 
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To simulate the urbanization impacts on rainfall, we couple the mesoscale model WRF with 

single layer urban canopy model (UCM) (Kusaka et. al., 2001). The model is initialized at 00Z 

4th July 2006 UTC allowing for 24 hr spin up with a horizontal resolution 4 km at the Brief 

descriptions of physical parameterizations used for simulation is presented in Table 6.2. 

Table 6-2  Model configuration and setup 

Physics Setup 

Cloud Micro physics Thompson scheme (Thompson et. al., 2008) 

Sub grid scale cloud Kain-Fritsch (new Eta) scheme (Kain, John S., 2004) 

Boundary-layer Mellor-Yamada-Janjic TKE scheme (Janjic and Zavisa I., 

1994,Janjic 1994, 2002) 

Long wave radiation RRTM scheme (Mlawer et al.,1997) 

Short wave radiation Dudhia scheme(Dudhia, J., 1989) 

Surface-layer Monin-Obukhov -Janjic scheme (Monin A. S., and A. M. 

Obukhov, 1954, 

Janjic, Z. I., 1994) 

Land-surface Unified Noah land-surface model(Tewari et al. 2004) 

Urban Parameterization Single-layer, UCM (Kusaka et al. 2001) 

 

6.4.2.1 Selection of simulation time period 

We perform the dynamic experiment with WRF for 5 years of monsoon season to understand 

the effect of urban expansions over the extreme precipitation process. The selection of 

simulation time period is carried out to obtain a representative condition of interannual 

monsoonal variations. The 5 years are selected on the following basis.  

 

Table 6-3 Selection basis for the rainfall years for model run 

Sr. No. Criteria Year 

1 The year with occurrence of highest no of extremes 1983 

2 The year with occurrence of lowest no of ext 2002 

3 The year with mean rainfall closest to time series mean 2000 

4 The year with lowest mean rainfall 1986 

5 The year with highest mean rainfall 1990 
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We perform the WRF simulation for three different cases, pre urban (with land use 1973), 

current urban (with land use 2001), projected urban (with projected land use of 2050). The 

differences in results between them quantify the impacts of urbanization development.  

6.5 Integration of Statistical and Dynamic Downscaling  

We evaluate the quantile values of the downscaled projections with both statistically and 

dynamical methods as well as the observed rainfall. As the dynamic downscaling considers the 

physical process corresponding to occurrence of rainfall it is expected to have simulated values 

closer to the observed values, especially at the higher quantiles. We perform the quantile 

transformation of statistically downscaled projections on the basis of dynamically downscaled 

projections obtained different quantiles. Firstly a base transform is performed with the dynamic 

downscaling values obtained over WRF-LSM run considering the 1973 land use pattern over 

the city of Mumbai. This base transform is essentially required as the statistically downscaled 

projection highly underestimates the extreme events. The subsequent integrated projections for 

historical and future time period is obtained considering WRF-LSM run for 2001 and 2050 

land use pattern respectively. This methodology is similar to the bias removal with quantile 

value mapping proposed by Li at. al. 2010. 

 

6.6 Results  

 

The urban rainfall projection for historical as well as future scenarios is achieved through the 

statistical downscaling technique. The multi model average is calculated to remove the intra 

model uncertainty in the rainfall projections (Salvi et al. 2013). The 5 years rainfall projections 

are obtained with dynamic downscaling considering pre, current and future urbanization over 

the city of Mumbai. The comparison of the mean and standard deviation and extreme for 

observed data and projected data for historical time period (1969-2005) is made to ascertain 

the performance of downscaling procedures. The Figure 6.4 indicates the performance of multi 

model averages of statistical and dynamic downscaling and model in reference with that of 

observed rainfall for the period 1979 -2005.   
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Figure 6.4 Performance of Statistical and Dynamic Downscaling methodology 

The mean rainfall projections from GCM after downscaling show results equivalence with 

observed rainfall.  This indicates that the rainfall projected from selected predictors is very well 

simulated with the statistical downscaling model under its mean conditions. However the 

standard deviation (Std) and extreme rainfall projections (95th quantile) are not simulated at the 

same degree of accuracy. The dynamic downscaling at the same time over estimates the mean 

condition but at the same time simulates the standard deviation and extremes with a greater 

accuracy. We again observe am increase in the extreme precipitation amount with the amplified 

urbanization over the city of Mumbai provided within the model simulations as land use land 

cover maps.  
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Figure 6.5 Spatial variability comparison between WRF-LSM 

The outputs at different quantile levels considering the three stages of urban development of 

the city of Mumbai  
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Figure 6.6 Difference of spatial variability comparison between WRF-LSM outputs  

The difference between model simulated precipitation at different quantile levels considering 

the three stages of urban development of the city of Mumbai 

The Figure 6.5 shows the spatial pattern of simulated rainfall at 4 km resolution over the city 

of Mumbai. The difference with increased urbanization is observed at higher quantiles as 

indicated with figure 6.6. Considering the fact that the changes are observed mainly at the 
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higher quantiles the quantile integration are applied at the higher quantiles. The performance 

of integration methodology is as shown with figure 6.7. 

 

Figure 6.7 Performance validations of integrated model projections 

The mean standard deviation and extremes of statistical downscaled and integrated projections 

are compared with the observed rainfall over the same time period 

The projections of future rainfall for the period 2030 -2050 are carried out for both RCP 4.5 

and RCP 8.5 scenario. The obtained statistical and integrated projections are as shown with 

figure 6.8. 

 

Figure 6.8 Integrated model projections for the future time period 

 



121 

 

6.7 Summary  

 

This analysis is undertaken to estimate the effect of urban expansion of the city of Mumbai 

over last 30 years and further up to 2050 over the rainfall extremes. The urban expansion of 

the city of Mumbai over last 30 years and further up to 2050 is provided to the WRF-LSM. 

The projections obtained with limited runs of dynamic downscaled output are integrated with 

the longer time period statistically downscaling outputs. The assessment of proposed 

methodology over the historic time period reveals an improvement of the projected rainfall in 

terms of standard deviation and extremes. We obtain the integrated projections for the future 

time period considering two different emission scenarios. Here it is important to note that the 

projected rainfall increases with increased urbanization. 

Climate projections are very important to understand the behaviour of different atmospheric 

processed under the changing global climate. Precipitation downscaling improves the coarse 

resolution and poor representation of precipitation in global climate models, and helps end 

users to assess the likely hydrological impacts of climate change. The statistical downscaling 

remains relatively non expensive but does not take care of the physical processes. The major 

limitation of dynamic downscaling is the requirement of very high computational efficiency. 

The proposed novel approach integrating the outputs from the statistical and dynamic 

downscaling methodology is useful for large number of urban regions of the country especially 

of extreme precipitation projection. 
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Chapter 7  : SUMMARY AND FUTURE SCOPE OF STUDY 

 

7.1 Research contribution from the present study 

 

Overall, this study highlights the important role of land use /land cover and urbanization for 

understanding the rainfall changes as part of regional climate change. Although only a small 

percentage of land covers urban areas significantly alter the climate, biogeochemistry, and 

hydrology at local and regional scales. 

The work presented here firstly includes literature review on the impact of urbanization on 

rainfall and identifies a research gap in terms of a theoretical and numerical study to highlight 

role that the UHI plays in precipitation enhancement for Indian summer monsoon rainfall. The 

application of remote sensing data and is proved to be an objective and effective method for 

understanding spatial characteristics and dynamic changes of urban thermal landscape and 

providing decision-making reference for urban planning and management. We observe the 

daytime SUHI characteristics mainly governed by the natural factors whereas the nighttime 

SUHI is driven by the anthropogenic factors. The research highlights the higher occurrences of 

extreme temperature in nearby non-urban regions than over the urban region as opposite to the 

reported effect of UHI in different parts of the world. The analysis of gridded precipitation data 

is undertaken to demonstrate an overall picture of the impacts of urbanization on Indian 

summer monsoon rainfall extremes. The key finding lies in understanding the non–uniformity 

of these impacts on extreme rainfall across the country. The presented analysis results of 

extremes with station data of Mumbai and Alibaug indicate that the summer monthly rainfall 

amount shows an increasing trend under the influence of urbanization changes and the UHI 

effect. These results highlight the need of an effective flood forecasting system to safeguard 

the large population of the metropolitan Mumbai against the occurrences of extreme rainfall 

events. The statistical quantile forecast models relationship between the large scale circulation 

and rainfall extremes to provide a short range (1-3days) extreme rainfall forecast. The proposed 

forecasting model provides a remarkable improvement over the coarser scale NWF output to 

provide an efficient extreme rainfall forecast over the city of Mumbai. However the false 

detection of extreme around 3-5 days of its actual occurrence remains a challenge. The extreme 

rainfall projections obtained with dynamic downscaling shows an increase with the expansion 

of urban landuse over the city of Mumbai. However, this methodology is computationally 

expensive hence difficult to apply for the longer time period and several locations. The 
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integration of dynamic downscaling outputs with the projections obtained with statistical 

downscaling provides a remarkable improvement to the extreme rainfall projections. Further 

this methodology is computationally inexpensive and hence can be easily applied for a longer 

time periods and many different urban locations.  

 

In the same context more case studies are needed for the Indian subcontinent to verify the 

effects of cities on climate and particularly the extreme rainfall events. The work has 

implications for policy makers, urban planners, water resource managers, and agriculture 

professionals who may use an understanding of urban rainfall climate in the design of better 

drainage systems, planning of land use, or identification of optimal areas for agricultural 

activity.  

In the above mentioned context, the analysis contributes significantly to the literature by having 

demonstrated the effect of urban growth over the country to the development of UHI and its 

effect over the heavy rainfall climatology covering the short range forecast as well as long 

range projection. 

7.2 Future scope of work  

 

Following research activities are planned as next phase the of current work; 

 

 A complete understanding of the SUHII behaviour under the changing emission 

scenario may be correctly understood utilizing the emissions in chemical transport 

models. For example to calculate columnar concentrations of BC, and subsequent 

radiative effects, which could influence the surface radiation balance and SUHII 

therefore. 

 The proposed quantile regression model revealing the urbanization effects on rainfall 

extremes based on the relationship between the large scale circulation and rainfall extremes. 

The calibration of rainfall model with past data may not guarantee good simulations for 

future considering the urban developments. Further to this, the quantile regression is a black 

box model and hence it cannot identify the physical mechanisms, which are affected by 

urbanization and are responsible for changing the patterns of rainfall extremes. This needs 

to carry out a follow on research activities in understanding the fingerprints of extremes 

(Nayak and Ghosh, 2012) and then identifying the changes in the fingerprints at local 

scale during extremes for pre and post urbanization periods.  
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 The satellite based cloud detection is an important source of information for short range 

rainfall forecasting. The role of integrating the satellite cloud data along with climate 

data in a forecasting model may be checked to further improve the skill of proposed 

forecasting model in order to reduce the uncertainty associated with it and obtain a more 

realistic forecast. Development of computationally inexpensive forecasting models 

based on statistical methodology is of a high importance for the large number of fast 

developing urban centers of the country. 

 A realistic rainfall projection is valuable information for urban water resources 

development and management. Considering the spatial non uniformity in trends of 

different rainfall parameters with different climate zones and urban centers of the 

country. A specialized effort is required to obtain a correct urban rainfall projection for 

different urban centers of the country. This may include considering the dynamical 

aspect of land use change with a coupled statistical and dynamical modeling as 

demonstrated here.  
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