

INDIAN NATIONAL COMMITTEE ON SURFACE WATER (INCSW-CWC)

UID	KL-2006-106	
Type (State whether	Final Report	
final or draft report)		
Name of R&D Scheme	STUDY ON HYDROLOGY OF SMALL	
	WATERSHEDS OF HIGHLAND KERALA	
Name of PI & Co-PI	Dr Celine George &Dr George Abe	
Institute Address	Centre for Water Resources Development	
	and Management, Kunnamangalam P. O.,	
	Kozhikode, Kerala, Pin - 673571	
Circulation(State	Open	
whether Open for		
public or not)		
Month & Year of	February 2021	
Report Submission		

©INCSW Sectt.
Central Water Commission

E-Mail: incsw-cwc@nic.in

STUDY ON HYDROLOGY OF SMALL WATERSHEDS OF HIGHLAND KERALA

Funded by:

INDIAN NATIONAL COMMITTEE ON HYDROLOGY (INCOH)

CENTRE FOR WATER RESOURCES DEVELOPMENT AND MANAGEMENT KUNNAMANGALAM, KOZHIKODE – 673 571

FEBRUARY 2021

EXECUTIVE SUMMARY

The project entitled "Study on Hydrology of Small Watersheds of Highland Kerala" was sanctioned to CWRDM vide letter no.23/47/2006-R&D/207-217dated January 23, 2006, by INCOH, MoWR, Government of India. The duration of the project was three years and the total sanctioned budget was Rs 13.0 lakhs. As per the request of the investigator the period of the project was extended up to August 2010.

Seven small sub-watersheds in the Erattayar watershed in highland Kerala has been considered in this study. Erattayar Panchayath forms a part of the Periyar river basin, which flows through Idukki, the high-range district of Central Kerala. Erattayar watershed is having an area of 64.6sq.km. and lies between 77° 01' 00" and 77° 10' 00" E longitude and 9° 45' 30" and 9° 51'00" N latitude. The average slope is 18.33%. The entire watershed is having mixed cultivation with seasonal crops like tapioca, plantain and other plantation crops like coffee, pepper, coconut, arecanut, etc. Few patches of cardamom cultivation are also found in the watershed.

The sub-watersheds selected are (a) Thankamani with area 0.48sq.km and stream order 1, (b) Kamakshy with area 1.38sq.km and stream order 2, (c) 8th mile with area 2.05sq.km and stream order 3, (d) Vazhavara with area 3.7sq.km and stream order 3, (e) Idinjamala with area 4.3sq.km and stream order 3, (f) Parakkadavu with area 7.98 and stream order 4 and (g) Nalumukku with area 22.8sq.km and stream order 5. Geomorphological analysis was carried out for the sub watersheds. It is observed that Kamakshy, Vazhavara and Idinjamala is elongated and 8th mile less elongated and Parakadavu is oval in shape. As the area of the sub watershed increases the discharge observed is also seen increasing except for Idinjamala. Idinjamala is observed to be very elongated with very less relief ratio.

A meteorological yard for observing daily rainfall, temperature, humidity, wind speed, etc. was installed at Thankamani. Another raingauge was installed at Pathammile. Soil samples were

collected bi-weekly from each sub-watersheds and water levels observed from four selected open wells. Staff gauges were installed at the seven sub-watersheds for observingdaily water levels. Bi-weekly velocity measurements were made and stage-discharge curve plotted for the seven sub-watersheds. Streamflow data collection at Thankamani and Nalumukku were obstructed several times due to flash floods/ debris flow/ river sand mining. For the other five stations data was collected continuously during the project period.

During the project period, the average annual rainfall received in the watershed is 2634mm with 58% during the south-west monsoon (June –August), 28% during the north-east monsoon (September-December). and remaining during the dry months (January-May). The annual average rainy day is 145. Comparing this data with the long term data of a nearby station, Chinnarwhich is maintained by the State Water Resources Department, there is variation in total rainfall (3452mm) but the similarity is observed in percentage contribution (58%, 26% and 16% seasonally) and rainy days (142). The maximum temperature observed is 34°C and the minimum is 11°C. The monthly average potential evapotranspiration has been observed to vary from 2.75mm/day in July to 4.34mm/day in March. The average monthly discharge values were computed for the five locations. An infiltration study was conducted at one location and the infiltration rate was found to be 60cm/hr initially and becomes constant at 8cm/hr in the sandy loam soil with a moisture content of 23.4%. The average soil moisture variation is observed to be 16.5% in January to 26.9% in August. A sediment rating curve has been developed for the watershed at Nalumukku.

AVSWAT model was attempted to simulate streamflow for the selected watersheds. Based on the comments from the experts the report was revised. AVSWAT model couldn't be re-run with the same version as it is not workable in the new system and userface. Hence the newest version ArcSWAT was executed with the data collected. The rainfall, other climate data, soil moisture, evapotranspiration data, etc were taken as the input data for the model in addition to the DEM, soil, and land use data as thematic layers. ASTER DEM was downloaded from the internet and Soil map and soil details collected from Soil Survey Organisation. Land use map was collected from the Land Use Board. Two years of data were taken for calibrating the model. The most sensitive parameter in predicting the streamflow values was arrived for each station by using

SWAT CUP software. The model was calibrated and validated for the prediction of flow at four stream gauging stations, Idinjamala, Vazhavara, 8th mile, and Parakkadavu. The calibrated model was also validated with the data for the four stations for 2009 and forKamakshy station. SWAT 2012 is found to be good in predicting mean monthly flows in the Erattayar watershed, with good accuracy.

The average annual water yield per unit area for the sub watersheds obtained from the model simulation is 1400.71mm for Kamakshy, 2902.2mm for 8th mile, 1253.21mm for Vazhavara, 484.15mm for Idinjamala and 2032.04mm for Parakadavu sub watersheds. For the less elongated sub watershed (8th mile) the yield per unit area is observed to be high. As the watershed area increases yield per unit area decreases.

CONTENTS

Sl.No.	Particulars	Page No.
1.	Title of the project	7
2.	Name and addresses of the PI and other investigators	7
3.	Name and address of the institute	7
4.	Financial details	7
5.	Utilisation Certificate	9
6.	Statement of equipment purchased under the scheme	22
7.	Original objectives and methodology as in the sanctioned proposal	24
8.	Any changes in the objectives during the operation of the scheme	25
9.	All data collected and used in the analysis with sources of data	25
10.	Methodology actually followed	30
11.	Conclusions/Recommendations	83
12.	How do the conclusions/recommendations compare with current thinking?	84
13.	Field tests conducted	84
14.	Software generated, if any?	85
15.	Possibilities of any patents/copyrights. If so, then action taken in this regar	d 85
16.	Suggestions for future work	85

I.Title of the scheme: Study on hydrology of small watersheds of highland kerala

II.Name and addresses of the PI and other investigators:

Principal investigator : Dr Celine George, Principal Scientist& Head,

CWRDM Sub Centre, Manimalakunnu,

Oliyappuram P. O., Koothattukulam, Ernakulam,

Kerala -686662.

Co-Principal investigator : Dr George Abe, Chief Scientist& Head, Sub

Centre, Kottayam, Kerala.

Co-investigators : Sri E. G. Soman, Technical Officer and

Sri K. I. Jose, Technical Officer

III. Name and address of the institute : Centre for Water Resources Development and

Management (CWRDM), Kunnamangalam P. O.,

Kozhikode-673 571, Kerala.

IV. Financial details:

i) Sanctioned cost: Rs 13,00,000/- (Rupees Thirteen Lakhs only)

ii) Details of Grant-in-Aid sanctioned:

S.No.	Subhead	Amount (Rs)
1	Salary	
	(2 nos JRF/SRF @Rs8000/- per month for 1 st and 2 nd year and	6,00,000
		0,00,000
	@Rs 9000/- per month for 3 rd year)	
2	Travel Expenditure	1,60,000
3	Infrastructure/Equipment	1,12,000
4	Experimental charges	1,60,000
	Total	10,32,000
5	Contigency	51,600
6	Overhead charges	2,16,720
	Grand Total	13,00,320
	Say	13,00,000

iii) Amount released: Rs 10,83,000/- (Rupees Ten Lakhs Eighty Three Thousand only)

iv) Expenditure:

Year	Opening Balance	Grant Received	Total	Expenditure	End Balance
2005-06	Nil	296,000.00	296,000.00	Nil	296,000.00
2006-07	296,000.00	Nil	296,000.00	245,509.00	50,491.00
2007-08	50,491.00	250,000.00	300,491.00	312,784.50	-12,293.50
2008-09	-12,293.50	429,000.00	416,706.50	319,812.00	96,894.50
2009-10	96,894.50	108,000.00	204,894.00	193,833.00	11,061.50
2010-11	11,061.50	Nil	11,061.50	Nil	11,061.50

Sub-Head	Total
	Expenditure
Salary	619,466.00
Travel Expenditure	158,144.00
Infrastructure/Equipment	117,746.00
Experimental charges	176,582.50
Total	1,071,938.50

- (v) Unspent balance (if any) and return of unspent balance:
 - i) unspent amount: Rs 11,061.50
 - ii) refund done by DD no. 760726 dated 18.09.2020 in favour of PAO, MoWR to Member Secretary, INCSW Sectt, Ist Floor, Wing-IV, West Block-1, R. K. Puram, New Delhi-110066.

V. Utilization Certificate

UTILISATION CERTIFICATE

Utilisation certificate for the period: 1 April 2005 to 31 March 2006

Title of the project: Study on hydrology of small watersheds of high land

Kerala.

Name of the Institution: Centre for water Resources Development and

Management, Calicut, Kerala.

Principal Investigator: Celine George

Ministry of Water Resources letter reference sanctioning the project :

23/47/2006-R&D/207-217, Dt: 23-01-2006

Head of account as given in the original sanction letter:

2701.80.00.004.05.01.31 Major & Medium Irrigation - General Research - R&D Programme

- Contribution /Grant - Grant- in-Aid of the Budget (Plan) of MoWR during 2005-2006

Financial Year to which the UC Pertains: 2005-2006

	Reference (MoWR letter and date)	Amount (in lakhs Rs.)
Amount brought forward from the financial year 2004-2005	NA	NA
Amount received during the financial year 2005-2006	23/47/2006-R&D/218- 229,Dt: 23-01-2006	296000.00
Total amount that was available for expenditure during the financial year 2005-2006	-	296000.00
Actual expenditure incurred during the financial year 2005-2006	-	Nil
Balance amount available on 1st April 2006	-	296000.00

Certified that:

1. The information given above is correct.

2. The amount remaining unutilized at the end of the financial year is carried forward for utilization during the next year ie. 2006-2007

Signature of the Principal Investigator with date

Officer-in-charge CWRDM Sub Centre Manimalakunnu

Signature of the Registrar/ Accounts Officer with date

DEPUTY REGISTRAR (ACCOUNTS) CWRDM, Kozhikode - 673 571

Signature of the

Head of the Institute with date

Executive Director centre for Water Resources evelopment and Management

UTILISATION CERTIFICATE

Utilisation certificate for the period: 1 April 2006 to 31 March 2007

Title of the project: Study on hydrology of small watersheds of high land Kerala.

Name of the Institution: Centre for water Resources Development and

Management, Calicut, Kerala.

Principal Investigator: Celine George

Ministry of Water Resources letter reference sanctioning the project: 23/47/2006-R&D/207-217, Dt: 23-01-2006

Head of account as given in the original sanction letter: 2701.80.00.004.05.01.31 Major & Medium Irrigation - General Research - R&D Programme — Contribution / Grant — Grant- in-Aid of the Budget (Plan) of MoWR during 2005-2006

Financial Year to which the UC Pertains: 2006-2007

Reference (MoWR letter and date)	Amount (in lakhs Rs.)
NA	296000,00
-	Nil
£ 3000 -	296000.00
_	245509.00
-	50491.00
	and date)

1. Certified that the information given above is correct.

 The balance of Rs.50491/- remaining unutilized at the end of the year is carried forward for utilization during the next year ie. 2007-2008.

Signature of the Principal Investigator with date

Officer-in-charge OWRDM Sub Centre Manimalakunnu Signature of the Registrar/ Accounts Officer with date Signature of the Head of the Institute with date

Executive Director Centre for Water Resources Development and Management Kozhikode CENTRE FOR WATER RESOURCES DEVELOPMENT AND MANAGEMENT

An Institution of the Kerala State Council for Science, Technology and Environment, Government of Kerala

Calicut 11-01-08

UTILISATION CERTIFICATE

Certified that a sum of Rs. Nil was received as fund for the Project – Study on hydrology of small watersheds of high land - Kerala, funded by INCOH, undertaken by the Centre for Water Resources Development and Management, Calicut, Kerala, and a sum of Rs. 296000/- (Rupees Two lakhs ninety six thousand only) was brought forward as previous year balance and that a sum of Rs.245509/- (Rupees Two lakhs forty five thousand five hundred and nine only) has been utilized during the period 2006-2007 for the purpose for which it was granted.

For Centre for Water Resources Development and Management

(Accounts) Executive Director

For S. Suresh Babu Associates Chartered Accountants

S. Suresh Babu B Sc. FCA

Utilisation Certificate

Utilisation Certificate for the financial year

2007 - 2008

Title of the Project/Scheme

Study on Hydrology of Small Watersheds of Highland Kerala.

Name of the Institution

Centre for Water Resources **Development and Management** (CWRDM), Calicut, Kerala

Principal Investigator

Celine George

Ministry of Water Resources letter reference sanctioning the project

23/47/2006-R&D/207-217,

Dt: 23.01.2006

Head of account as given in the original sanction letter

2701.80.00.004.05.01.31 Major & Medium Irrigation - General Research - R&D Programme -Contribution/Grant - Grant-in-aid of the Budget (Plan) of MoWR

during 2005-06

Financial Year to which the UC pertains (Hereinafter Referred to as the UC Financial Year)

2007 - 2008

1000.70	Reference (MoWR letter and date)	Amount
Amount brought forward from the previous financial year	NA	50,491.00
Amount received during the UC Financial Year	-	2,50,000.00
Total amount that was available for expenditure during the <i>UC</i> Financial Year	-	3,00,491.00
Actual expenditure incurred during the UC Financial Year		3,12,784.50
Balance amount available at the end of UC Financial Year		-12,293.50

Certified that:

- 1. The information given above is correct.
- 2. An amount of Rs. 12,293.50 is overspent during the financial year 2007-08.

Signature of Principal Investigator

Date 13.05.08

Signature of Registrar/ Accounts Officer

DEPUTY REGISTRAR (ACCOUNTS) CWRDM, Kozhikode - 673 571

Signature of Head

of the Institute Director

Centre for Water Resources Development and Management Kozhikode

CENTRE FOR WATER RESOURCES DEVELOPMENT AND MANAGEMENT

An Institution of the Kerala State Council for Science, Technology and Environment, Government of Kerala

Calicut 05-12-08

UTILISATION CERTIFICATE

Certified that a sum of Rs.250000/- (Rupees Two lakhs fifty thousand only) was received as fund for the project 'Study on hydrology of small watersheds of highland Kerala' funded by INCOH, undertaken by the Centre for Water resources Development and Management, Calicut, Kerala, and a sum of Rs.50491/- was brought forward as previous year balance and that a sum of Rs.312784/50 (Rupees Three lakhs twelve thousand seven hundred and eighty four and paise fifty only) has been utilized during the financial year 2007-2008, for the purpose for which it was granted.

For Centre for Water resources Development and Management

Deputy Registrar (Accounts)

Executive Director

Executive Director

Centre for Water For Jayakumar, George & Associates
Development and Gregorient Chartered Accountants

CENTRE FOR WATER RESOURCES DEVELOPMENT AND MANAGEMENT Kunnamangalam, Kozhikode.

INCOH- STUDY ON HYDROLOGY OF SMALL WATERSHEDS OF HIGH LAND KERALA

Receipts and payments Account for the period from 01-04-2007 to 31-03-2008.

Receipts	Amount Rs.	Payments	Amount Rs.
Opening Balance	50491.00	Salary	172822.00
Fund	250000.00	Travel	46621.00
		Experimental charges	44709.50
Balance	12293.50	Equipment	48632.00
	312784.50		312784.50
	312784.50		

Deputy Registrar(Accounts)

Executive Director

Executive Director

Central or Mater Resources
Development and Management
Koznikode

Chartered Accountant

Utilisation Certificate

Utilisation Certificate for the financial year :

2008-09

Title of the Project/Scheme :

Study on Hydrology of Small Watersheds of

Highland Kerala

Name of the Institution

Centre for Water Resources Development and

Management

Principal Investigator

Mrs Celine George

Ministry of Water Resources letter reference sanctioning the project :

23/47/2006-R&D/207-217, Dt:23-01-2006.

Head of account as given in the original sanction letter:

2701.80.00.004.05.01.31 Major & Medium Irrigation - General Research - R&D Programme - Contribution/ Grant - Grant-in-Aid of the Budget (Plan) of MoWR during 2005-2006.

Financial Year to which the UC pertains: 2008-09

	Reference (MoWR letter and date)	Amount (Rs)
Amount brought forward from the financial year (2007-08)	NA	*Nil
Amount received during the UC Financial Year (2008-09)	Order No.23/47/2006-R&D/6892- 6901 Date 8-10-2008	429000.00
Total amount that was available for expenditure during the <i>UC</i> Financial Year	-	429000.00
Actual expenditure incurred during the <i>UC Financial Year</i> 2008-09	-	319812.00
Balance amount available at the end of <i>UC Financial Year</i> 2008-09	-	96894.50

^{*}Rs 12293/50 spent in excess as on 31-3-2008.

Certified that:

1. The information given above is correct.

2. The balance of Rs. 96894.50 remaining unutilized at the end of the year is carried forward for utilization during the next year i.e. 2009-10.

Signature of Principal'

Investigator

Date 29.04.09

Signature of Registrar Accounts Officer with date 4150 9

Signature of Head of the Institute

with date
Executive Director
Centre for Water Resources
Development and Management
Kozhikode

CENTRE FOR
WATER
RESOURCES
DEVELOPMENT AND
MANAGEMENT

An Institution of the Kerala State Council for Science, Technology and Environment, Government of Kerala

UTILISATION CERTIFICATE

Certified that a sum of Rs.429000/- (Rupees Four lakhs twenty nine thousand only) was received as fund for the project 'Study on hydrology of small watersheds of highland Kerala' funded by INCOH, undertaken by the Centre for Water resources Development and Management, Calicut, Kerala, and a sum of Rs.Nil was brought forward as previous year balance and that a sum of Rs.319812/- (Rupees Three lakhs nineteen thousand eight hundred and twelve only) has been utilized during the financial year 2008-2009, for the purpose for which it was granted.

For Centre for Water resources Development and Management

Deputy Registrar (Accounts)

Executive Director

Executive Director
Centre for Water Resout For Jayakumar, George & Associates
Development and Management
Kozhikode Chartered Accountants

Calicut Date:

> Ph: 91-495-2351800, 2351801 Fax: 91-495-2357827, 2351808 Website: www.cwrdm.org KUNNAMANGALAM, KOZHIKODE, PIN - 673 571 KERALA (INDIA)

CENTRE FOR WATER RESOURCES DEVELOPMENT AND MANAGEMENT Kunnamangalam, Kozhikode.

INCOH- STUDY ON HYDROLOGY OF SMALL WATERSHEDS OF HIGH LAND KERALA

Receipts and payments Account for the period from 01-04-2008 to 31-03-2009.

Receipts	Amount Rs.	Payments	Amount Rs.
Fund	429000.00	Opening Balance	12293.50
		Salary	196698.00
		Travel	32653.00
		Experimental charges	48087.00
		Equipment	42374.00
		Balance	96894.50
	429000.00	-	429000.00

Deputy Registrar(Accounts)

Executive Director

Executive Director Centre for Water Resources Development and Management Kozhikode Chartered Accountant

Utilisation Certificate

Utilisation Certificate for the financial year :

2009-10

Title of the Project/Scheme :

Study on Hydrology of Small Watersheds of

Highland Kerala

Name of the Institution

Centre for Water Resources Development and

Management

Principal Investigator

Mrs Celine George

Ministry of Water Resources letter reference sanctioning the project :

23/47/2006-R&D/207-217, Dt:23-01-2006.

Head of account as given in the original sanction letter:

2701.80.00.004.05.01.31 Major & Medium Irrigation – General Research – R&D Programme – Contribution/ Grant – Grant-in-Aid of the Budget (Plan) of MoWR

during 2005-2006.

Financial Year to which the UC pertains: 2009-10

	Reference (MoWR letter and date)	Amount (Rs)
Amount brought forward from the financial year (2008-09)	NA .	96894.50
Amount received during the UC Financial Year (2009-10)	Order No. 23/47/2006-RAD/ 1699-170 H. 24-09-2009	108000.00
Total amount that was available for expenditure during the <i>UC</i> Financial Year	-	204894.50
Actual expenditure incurred during the <i>UC Financial Year</i> 2009-10	-	193833.00
Balance amount available at the end of <i>UC Financial Year</i> 2009-10	-	11061.50

Certified that:

1. The information given above is correct.

2. The balance of Rs. 11,061.50 remaining unutilized at the end of December 2009.

Signature of Principal

Investigator

Date 10 03 2010

Signature of Registrar/ Accounts Officer

with date

DEPUTY REGISTRAR (ACCOUNTS) CWRDM, Kozhikode - 673 571 Signature of Head of the Institute

EXECUTIVE DIRECTOR

C W R D M Kunnamangalam P.O. Kozhikode - 673 571, Kerala

CENTRE FOR WATER RESOURCES DEVELOPMENT AND MANAGEMENT Kunnamangalam, Kozhikode.

INCOH- STUDY ON HYDROLOGY OF SMALL WATERSHEDS OF HIGH LAND KERALA

Receipts and Payments Account for the period from 01.04.2009 to 31.03.2010

Receipts	Amount Rs.	Payments	Amount Rs.
Opening Balance	96894.50	Salary	109200.00
Fund	108000.00	Travel	33739.00
		Experimental Charges	50894.00
		Balance	11061.50
	2,04,894.50		2,04,894.50

Deputy Registrar (Accounts)

Executive Director

Chartered Accountant

Executive Director Centre for Water Resources Development and Management Kozhikode

UTILISATION CERTIFICATE

Utilisation certificate for the period : 1 April 2010 to 31 March 2011

Title of the project

: Study on Hydrology of Small Watersheds of Highland Kerala

Name of the Institution

: Centre for water Resources Development and

Management, Calicut, Kerala.

Principal Investigator

: Mrs. Celine George

Ministry of Water Resources letter reference sanctioning the project:

No.23/47/2006-R&D/207-217 Dated: 23-01-2006

Head of account as given in the original sanction letter: 2701.80.004.05.01.Major & Medium Irrigation-General-Research-R&D Programme-Contribution/Grant-Grant-in-Aid of the Budget (Plan) of MoWR during 2005-2006

Financial Year to which the UC Pertains: 2010 - 2011

2	Reference (MoWR letter and date)	Amount Rs.
Amount brought forward from the financial year 2009-2010	NA	11061.50
Amount received during the financial year 2010 - 2011	NA	Nil
Total amount that was available for expenditure during the financial year 2010-2011	-	11061.50
Actual expenditure incurred during the financial year 2010-2011	-	NIL
Balance amount available on 31 st March 2011	-	11061.50

Certified that the information given above is correct.

Signature of the Principal Investigator

with date

Signature of the Registrar/ Accounts Officer

with date

Signature of the Head of the Institute with date

CENTRE FOR WATER RESOURCES DEVELOPMENT AND **MANAGEMENT** Kunnamangalam, Kozhikode.

INCOH- STUDY ON HYDROLOGY OF SMALL WATERSHEDS OF HIGH LAND KERALA

Receipts and Payments Account for the period from 01.04.2010 to 31.03.2011

Amount Rs.	Payments	Amount Rs.
11061.50		
	Balance	11061.50
11061.50		11061.50
	Rs. 11061.50	Rs. Payments

Principal Investigator Assistant Registrar (Accounts)

Executive Director

Calicut Date:06.02.2012 Chartered Accountant

FOR M/S JAYAKUMAR GEORGE ASSOCIATES CHARTERED ACCOUNT INTS. TRIVANDRUM

VI. Statement of equipment purchased under the scheme

Statement of Equipment Purchased (GFR-19)

[See Government of India's Decision 7 (b) under Rule 148 (3)]
Assets Acquired Wholly or Substantially out of Government grants
Register maintained by grantee institution
Block Account maintained by Sanctioning Authorities

Name of Sanctioning Authority: INCOH, MoWR, Govt of India

Serial No	
Name of Grantee Institution	CWRDM
No. and date of sanction	23/47/2006-R&D/207-217, Dt:23.01.2006
Amount of the sanctioned grant	Rs 13,00,000/-
Brief purpose of the grant	Project execution
Whether any condition regarding the right of ownership of Government in the property or other assets acquired out of the grant was incorporated in the grant-in-aid sanction.	Yes The assets/equipments acquired will remain the property of Govt of India
Particulars of the assets actually Credited or acquired	1. Electronic raingauge 2. Rain module 3. Pigmy current meter 4. Wading rod current meter 5. Developer for Sharp AR 5316 machine 6. Inkjet printer 7. Upgradation of WMS software
Value of the Assets as on (Date)	1. Rs 20,088/- 2. 6552/- 3. &4. 48,632/- 5. Rs 4304/- 6. Rs 2650/- 7. Rs 35,420/-
Purpose for which utilized at Present	Item no.1 to 4 used in field data collection for Centre's other projects. Item 7 used for project analysis work.

Encumbered or not	No
Reasons if encumbered	N/A
Disposed of or not	Items 5 and 6
Reasons and authority, if any, for disposal	Not working
Amount realized on disposal	N/A
Remarks	The items/equipment in working conditionsisutilized for the Centre's project implementation.

Principal Investigator

Head of the Department

EXECUTIVE DIRECTOR

CWRDM

Kunnamangalam P.O.

Kozhikode - 673 571, Kerala

VII. Original objectives and methodology as in the sanctioned proposal

i) OBJECTIVES

The main objectives of the project are:

- a. To identify the existing water resources of the watershed.
- b. To compute water availability and water demand of the area.
- c. To demarcate water-scarce areas.
- d. To understand other water-related environmental problems.
- e. To develop models relating hydrology and environmental factors.

ii) METHODOLOGY

As it is difficult to collect the data required for the study from the entire basin five small watersheds were selected within the basin. These small watersheds will be representing the whole River basin area.

Programme of work

- a) Demarcating the watershed boundary
- b) Conducting a detailed survey to identify different sources of water
- c) Collecting meteorological data from appropriate offices
- d) Installing rain/staff gauges at an appropriate position and monitoring data
- e) Carrying daily observations on meteorological parameters
- f) Recording the water table fluctuations and soil moisture variations
- g) Preparing land use maps of the watersheds
- h) Analysing the data to understand the relationship between hydrology and waterrelated problems
- i) Developing models to understand and predict the water-related environmental problems

VIII. Any changes in the objectives during the operation of the scheme

Objectives 'a to e' combined and stated as below

- To evaluate the hydrological and hydro-environmental status of the study area.
- To develop models relating to River basin hydrology and environmental factors

IX. All data collected and used in the analysis with sources of data.

Instrumentation was carried out to measure the following hydrologic and meteorological parameters [Rainfall, Evaporation, Temperature, Humidity, and Streamflow]

In addition periodic sampling/ field data collection was carried out to determine sediment movement, water table fluctuations and soil-moisture status.

Site Selection And Instrumentation

One meteorological yard was installed in the watershed, at Thankamany (Plate 1). The yard at Thankamany was instrumented with ordinary and automatic rain gauges, U S class A evaporation pan, Stevenson screen with maximum-minimum, dry and wet bulb and ordinary thermometers, wind vane and anemometer. In addition to this one non-recording rain gauge and an electronic rain gauge were installed at Pathammile (Plate 2).

Suitable sites were selected for stream gauging in the watershed for continuous observation of stage and discharge. The stations were located at Thankamany, Kamakshy, Parakadavu, 8th mile, Vazhavara, Idinjamala, and Nalumukku. Accessibility has been an important criterion in selecting the site and stream order were also considered while selecting the sites. A survey was conducted at each site and the river cross-sections were determined. Staff gauge painted and graduated in centimetres and metres, were installed in cement concrete foundations at the river bed and banks to read from zero to maximum expected flood levels at each gauging station.

Plate 1 Meteorological Yard Installed At Thankamany

A series of soil sampling stations were established to monitor the soil moisture variations concerning time and space. Few observation wells were selected based on the geography, topography, and geology throughout the basin to monitor the water table fluctuations in the watershed.

Velocity in the stream was measured with the help of a wading rod current meter (Plate 3). A double ring infiltrometer (Plate 4) was used for conducting the infiltration test.

Plate 2 Electronic Raingauge installed at Pathammile

Plate 3 Wading Rod Water Current Meter

Plate 4 Double Ring Infiltrometer

Data Collection Procedure

Rainfall data were collected from the two stations using non-recording and recording rain gauges. Daily evaporation was measured with the help of a class A evaporation pan from the meteorological yard at Thankamani. Dry and wet bulb, ordinary and maximum and minimum thermometers were installed as per standards to compute temperature fluctuations as well as humidity. Infiltration tests were conducted at Idinjamala. Constant infiltration rate has been determined by applying the best-fit equation for the observed data:

$$F = kt^{x} \tag{1}$$

where F is the cumulative infiltration, x and k are constants.

The sediment rating curve was plotted for the station after analyzing the suspended load in the collected samples and stream discharge. It is having the relationship:

$$S = kQ^{n}$$
 (2)

where k and n are constants.

Groundwater storage was computed after observing the water level fluctuations in the selected wells.

Suitable formats were used for recording flow velocities, river stages, discharge, rainfall, evaporation, temperatures, wind speed, suspended sediment load, etc.

Staff gauges were installed at seven gauging stations and daily readings were taken. These readings were converted to discharge using the stage-discharge curve plotted for each location. For preparing the stage discharge curves the area of flow and the velocity were measured at all points where staff gauges were installed. For measuring the velocity current meter was used.

Field data collected and used in analysis is listed in Appendix-I.

X. Methodology actually followed:

Observations

Study Area:

The study area selected lies within the Erattayar watershed with an area of 64.6 km²which situated between 09° 45′ 30″ and 09° 51′ 00″ N latitude and 77° 01′ 00″ and 77° 10′ 00″ E longitude (Fig.1). Erattayar watershed is a part of the Periyar river basinof Kerala State. The entire watershed lies in five panchayats namely, Mariapuram, Kamakshy, Erattayar, Kattappana, and Pampadumpara of the Idukki district. Considering the drainage pattern, contour lines and the accessibility to station points, the seven small sub watersheds in the Erattayar watershed were selected for the present work (details described in the analysis part).

Open wells are the major source of water both for drinking as well as for irrigation. About 50% of the population depends on well water for domestic purposes. The rest depends on public taps, ponds, canals and springs. 95 percent of the population reported water scarcity from December to May.

Physiography:

Erattayar watershed is mainly situated in the eastern highland region of Kerala State. The drainage map of the watershed along with the contour lines is given in Fig.2. The lowest most valley portion of the watershed is at 720 m above the mean sea level and the highest point is at 1270 m above the mean sea level. The average slope is 18.33%.

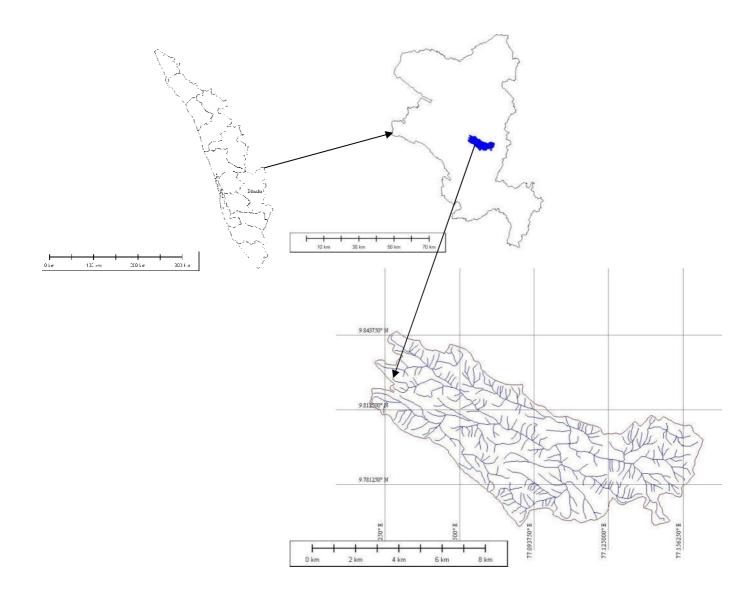


Figure 1 Location Map Of Erattayar Watershed

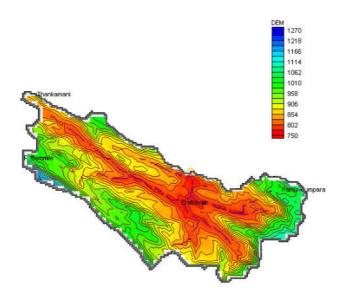


Figure 2 Contour Map Of Erattayar Watershed

Soils

Soil details for the study area were collected from the Soil Survey Organisation department of Kerala State. Venmany series, Thommankuthu series, and Pampadumpara series are the major soil groups identified in the watershed. Figure 3 shows the soil map (with below given details) of the watershed collected from Soil Survey Organization.

The venmany series are tentatively classified under clayey-skeletal, mixed, iso-hyperthermic, usticpalehumults. These are very deep well drained hill soils developed from gneissic parent material. Soils have reddish brown to red colour and clay loam to clay texture.

Thommankuthu series are classified under clayey-skeletal, mixed, isohyperthermic, usticpalehumults. They are very deep, well-drained hill soils developed from gneissic parent material. Soils are black to yellowish red with loam to clay texture.

Pampadumpara series are classified under clayey, mixed, thermic, typicpalehumults. They are very deep, well-drained hill soils developed from gneissic parent material. Soils have dark reddish-brown to yellowish red colour with silty clay to clay texture.

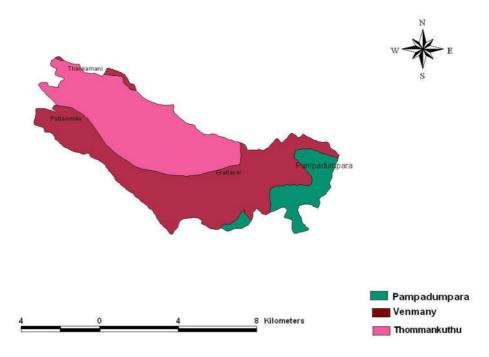


Figure 3 Soil Map Of Erattayar Watershed

Soil samples from 10 locations were collected and analyzed for its physico-chemical characteristics. The parameter values obtained are given in Table 1.

Table 1 Physico-chemical characteristics of the soil samples from Erattayar Watershed

Site	Sample Site	Latitude	Longitude	pH 1:10	EC 1:10	Organic	Organic
No.				(w/v)	(w/v)μs/	Carbon	Matter
					cm	(%)	(%)
1	Thankamany	9.841	77.034	4.85	9.38	0.73	1.25
	Yard						
2	Thankamany	9.8476	77.0322	5.74	32.10	0.16	0.28
3	Kamakshy	9.8299	77.0446	5.07	23.40	0.89	1.53
4	Parakkadavu	9.8304	77.0533	5.10	12.65	0.81	1.40
5	Nalumukku	9.8166	77.0661	5.51	9.38	0.89	1.53
6	Idinjamala	9.8213	77.0848	4.67	25.90	0.24	0.42
7	IdinjamalaThodu	9.8160	77.0893	4.74	12.18	0.57	0.98
8	Vazhavara	9.7912	77.0760	5.17	22.90	1.00	1.75
9	8 th Mile	9.8105	77.0353	4.95	11.68	0.98	1.68
10	Pathammile	9.8219	77.0275	4.10	22.70	1.47	2.53

Soils are found to be acidic in nature. Organic carbon as well as organic matter is very less in all the samples.

Climatological aspects

The average annual rainfall in the watershed during the observation period is 2634mm. On an average the watershed receives 58% of the total annual rainfall during the south-west monsoon (June-August), 28% during the north-east monsoon (September-December) and the remaining 14% during summer months (January-May). The maximum temperature that occurred in the watershed during the observed period is 34°C and the minimum temperature is 11°C. The average monthly temperature ranges from 21°C to 29°C.

Land-use

The land-use map of the Erattayar watershed collected from the Kerala Land Use Board is given in Figure 4. The entire area is having mixed cultivation with seasonal crops like tapioca, plantain, etc and other plantation crops like coffee, pepper, coconut, arecanut, etc. A few patches of cardamom cultivation are also found in the watershed.

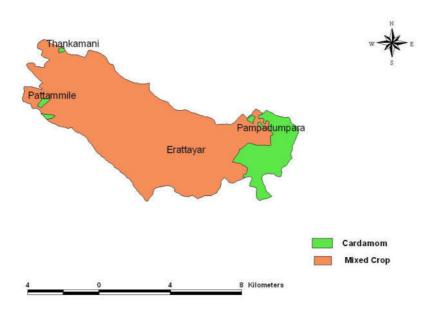


Figure 4 Landuse Map of Erattayar Watershed

Geomorphology of Erattayar watershed

The term geomorphologyrefers to the geometric aspects of the watershed, including length, drainage pattern, slope, and area. The description of the geometric aspects of a watershed in quantitative terms (the fundamental dimensions of length, time, and mass are used) is an important factor in hydrology. A classification of watersheds based on stream orders was introduced by Horton, which was later modified by Strahler (1952). There are certain laws governing stream numbers, stream length, basin area, and relief characteristics (Horton 1945, Morisawa 1968). Survey of India toposheets are the chief tools used for this kind of study. Any GIS package can be used for the linear and areal measurements.

Laws of Drainage Composition

The laws of drainage basin composition are given in Table 2. Morphometric analysis of small watersheds includes the quantitative measurement of the catchment characteristics and their expressions in numerical terms to evaluate the drainage system. Morphometric parameters like stream number, length, basin area, perimeter, etc can be found by direct measurement, whereas parameters such as bifurcation ratio, drainage density, basin relief, elongation ratio, etc can be computed.

An attempt has been made to study the laws of stream gradients and basin relief concerning the watershed. The parameters like drainage density, stream frequency and basin slope have also been studied. The Survey of India topo-sheets on a 1:50000 scale has been made use of to compute the morphometric parameters of the watershed.

Table 2 Laws of Drainage Composition

Law	Mathematical Expression	Particulars	Source
Stream Numbers	$N_u = R_b^{k-u}$	Nu - number of streams of given order 'u' R _b -	Horton (1945)
		bifurcation ratio-ratio of the number of streams	
		of a given order 'u' to the number of streams	
		of the next highest order	
		k - highest order of streams in a given basin	
Stream Length	$L_{u} = L_{1}R_{L}^{u-1}$	L _u - average length of streams of order 'u'	Horton (1945)
		R _L - stream length ratio	
Basin Areas	$A_{u} = A_{1}R_{a}^{u-1}$	A _u - average area of basin of order 'u'	Horton (1945)
		R _a - area ratio	Schumm(1956)
Stream Gradients	$S_{u} = S_{1}R_{s}^{k-u}$	R _s - gradient ratio or slope ratio	Horton (1945)
		S _u - average slope of streams of order 'u'	Morisawa(1968)
Basin Relief	$H_{u} = H_{1}R_{R}^{u-1}$	Hu - average relief of basins of order 'u'	Morisawa(1968)
		R _R - basin relief ratio	

Linear Aspects

Stream Order

The first step in basin morphology is the determination of stream orders. Stream ordering is the process of identification of the links in a stream network. The most widely used ordering scheme was developed by Strahler in which fingertip channels are specified as order one and where two first order tributaries join, a channel segment of second order is formed and so on. The number of stream segments of any given order will be fewer than that for the next lower order. The ratio of a number of segments of a given order Nu to the number of segments of the higher-order Nu+1 is termed as bifurcation ratio, Rb:

$$R_b = \frac{N_u}{N_{u+1}} \tag{1}$$

Horton's law of stream numbers states that the number of stream segments of each order forms an inverse geometric sequence with an order number.

$$N_u = R_b^{(k-u)} \tag{2}$$

where k is the order of the trunk segment.

Stream Length

Horton's law of stream lengths states that the mean length of stream segments of each of the successive orders of a basin tends to approximate a direct geometric sequence in which first-order term is the average length of the segments of the first order. If the law of stream length is valid, a plot of the logarithm of stream length (ordinate) as a function of order (abscissa) should yield a set of points lying essentially along a straight line (Schumm 1956).

Mean channel length can be calculated by knowing total stream length and stream order:

$$\overline{L_u} = \frac{\sum_{i=1}^{N} L_u}{N_u} \tag{3}$$

Areal Aspects

The law of stream areas is similar to the law of stream lengths. The law relates the mean tributary area of streams of order $u(A_u)$ to the mean drainage area of first order basins (A_I) and the stream area ratio (R_a) .

$$A_u = \overline{A_1} R_a^{u-1} \tag{4}$$

where the stream area ratio is the average basin area of streams of one order to the average area of basins of the next lower order. The similarity in the above two equations reflects the high correlation that exists between watershed length and area.

Relation of Area to Discharge

An empirical relation between stream discharge and basin area is:

$$Q = JA^m (5)$$

where Q and A are the discharge and drainage area, J and m are derived by fitting a regression line to the available data. The relationship between logarithmic discharge and area is linear from which J and m can be calculated.

Drainage Density

The drainage density (D) is the ratio of the total length of streams within a watershed to the total area of the watershed. Thus D has units of the reciprocal of length. A high value of drainage density would indicate a relatively high density of streams and thus a rapid storm response. Highly resistant or highly permeable subsoil material and dense vegetative cover form low drainage density (Chow 1964).

$$D = \frac{\sum_{i=1}^{k} \sum_{i=1}^{N} L_{u}}{A_{u}}$$
 (6)

Stream Frequency

Horton introduced stream frequency or channel frequency, defined as the number of stream segments per unit area.

$$F = \frac{\sum_{i=1}^{k} N_u}{A_u} \tag{7}$$

Constant of Channel Maintenance

Schumm used the inverse of drainage density as a property termed as aconstant of channel maintenance given as

$$C = \frac{1}{D} = \frac{A_u}{\sum_{i=1}^{k} \sum_{i=1}^{N} L_u}$$
 (8)

Slope Profile

This is an expression of the slope along a certain line. A profile to the scale gives an accurate picture of the landform along the given line.

Basin Shape

Watersheds have an infinite variety of shapes, and the shapes supposedly reflects the way that runoff will "bunch up" at the outlet. A number of watershed parameters have been developed to reflect basin shape. The following are a few typical parameters.

1. Form factor (R_f) :

$$R_f = \frac{A_u}{L_h^2} \tag{9}$$

where A_u is the basin area and L_b is the maximum basin length (km).

2. Circularity ratio (R_c):

$$R_c = \frac{A_u}{A_p} \tag{10}$$

where A_p is the area of a circle that has the same perimeter as the basin.

3. *Elongation ration* (R_e):

$$R_e = \frac{D}{L_b} \tag{11}$$

D is the diameter of the circle of basin area.

Watershed Relief

A number of parameters have been developed to reflect variations in watershed relief. The most common are the channel slope, the watershed slope and the hypsometric curve.

The channel slope is given by:

$$S_c = \frac{\Delta E}{L_c} \tag{12}$$

where ΔE , the relief is the difference in elevation between the points defining the upper and lower ends of the channel and L_c is the length of the channel between the two points. Maximum

relief within a given region of given boundary is the elevation difference between the highest and the lowest points. Maximum basin relief is the elevation difference between the mouth and the highest point on the basin perimeter.

Hypsometric Curve

The hypsometric curve is a description of the cumulative relationship between elevation and the area within the elevation intervals. The curve is plotted as elevation plotted as the ordinate and the area within the watershed above the elevation plotted as abscissa.

The determination of different stages of the basin development have been done following tentative boundaries suggested by Strahler, 1952 (table 3).

Table 3 The Tentative Boundaries Suggested For The Determination Of Different Stages In Hypsometric Analysis

	<u> </u>
Percentage	Stages of Watershed
Above 60%	Youth Stage [Inequilibrium]
35% to 60%	Mature Stage [Equilibrium]
Below 35%	Old Stage [Monaduock phase]

Analysis

Quantitative geomorphic studies in erattayar watershed

Linear Aspects

Considering the drainage pattern, contour lines, and the accessibility to station points, seven small sub-watersheds with different stream orders selected for the present study is given in figure 5 and details in table 4. The stream orders were identified following the system introduced by Horton and later modified by Strahler (1952). Higher stream order is associated with greater discharge and higher velocity. The total number of stream segments decreases with stream order. Any deviation indicates that the terrain is typified with high relief and/or moderately steep slopes, underlain by varying lithology and probable uplift across the basin.

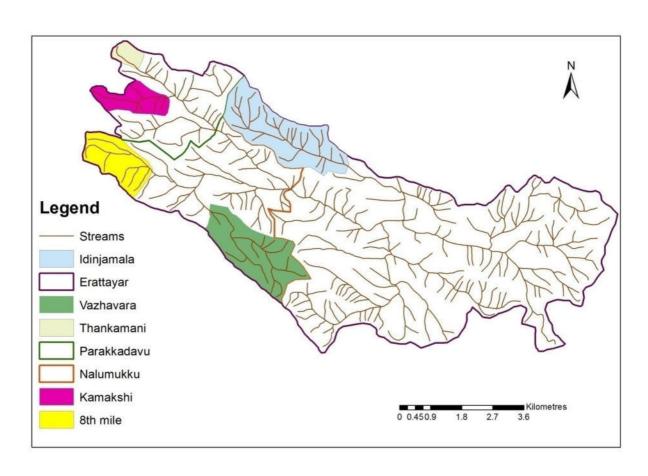


Figure 5 Drainage Map of Erattayar Watershed showing the selected sub watersheds

Table 4 Linear Aspects Of The Basin And Sub-Basins Of Erattayar Watershed

_ u 4	½						62	69		98)2			82			35				7(
Total Stream Length \[\sum_{u} \] [km]	205.884						0.979	4.259		6.936			10.605			15.178			25.685				74.07				
Total No.of Stream s \sum_Nu	316						1	7		6			15			29			39				105				
Max. Basin Length L _b	9.59						0.952	2.26		2.21			3.51			3.87			3.8				6.5				
Length	1	0.810	1.183	2.424	0.324	0.024	1	1	1.644	ı	0.886	0.218	1	0.835	0.195	1	0.630	0.094	-	2.231	0.803	0.022	1	1.406	1.794	1.956	0.014
Mean Length Lu	0.663	0.537	0.635	1.540	0.499	0.012	0.979	0.557	0.916	0.871	0.772	0.168	0.596	0.498	2.550	0.4669	0.2943	3.14	0.5611	1.2516	1.0045	0.0226	0.5877	0.8261	1.4824	2.9	0.0404
Bifurca tion ratio R _b	-	4.65	3.71	2.80	2.50	2.00	Ī	1	6.00	1	3.00	2.00	ı	3.67	3.00	1	3.67	6.00	-	6.20	2.50	2.00	1	5.06	3.20	2.50	2.00
Stream Length Lu [km]	160.357	27.924	8.894	7.699	0.998	0.012	0.979	3.343	0.916	5.225	1.543	0.168	6.561	1.494	2.55	10.272	1.766	3.14	17.395	6.258	2.009	0.0226	47.6	13.218	7.412	5.8	0.0404
No.of Stream S Nu	242	52	14	S	2	_	1	9	1	9	2	1	11	3	1	22	9	1	31	S	2	1	81	16	S	2	1
Order	1	2	3	4	5	9	1	1	2	1	2	3	1	2	3	1	2	3	1	2	3	4		2	3	4	5
Perimete r P _b [km]	49.8						2.7	5.89		6.13			9.28			10.3			15.1				29.8				
Longitud	77.105						77.039	77.047		77.043			77.058			77.094			77.060				77.079				
Latitud	9.814						9.838	9.830		9.811			9.801			9.812			9.822				908.6				
Drainage Area A _u [km ²]	64.6						0.48	1.38		2.05			3.7			4.3			7.98				22.8				
Basin/Sub- basin	Erattayar					_	Thankamani	Kamakshy		8th mile	-		Vazhavara	-		Idinjamala			Parakadavu				Nalumukku		-	-	_

The logarithm of the number of streams (log Nu) plotted against stream order (u)is given in figure 6, which shows a linear relationship. Table 4 gives the linear aspects of the Erattayar watershed and its sub-watersheds. Figure 7 gives the linear relationship between the logarithm of length of streams (log Lu) and stream orders. Horton's law of stream numbers states that the number of stream segments of each order forms an inverse geometric sequence with the order number. While analyzing each sub watersheds separately, it is seen that a straight-line relationship is followed for watersheds except Idinjamala and Vazhavara for the Log Lu versus order u. It indicates that except for Idinjamala and Vazhavara watersheds the area has uniform underlying lithology and geologically there has been no probable uplift in the basin.

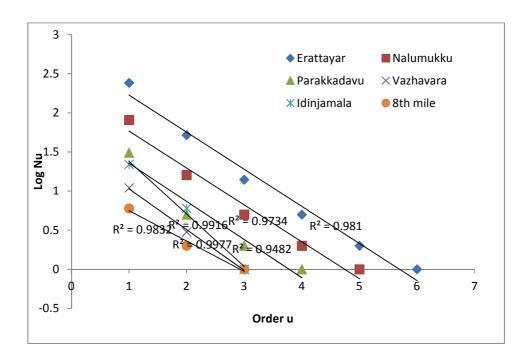


Figure 6 Order u vs Log number of streams (Log Nu) – Erattayar Watershed

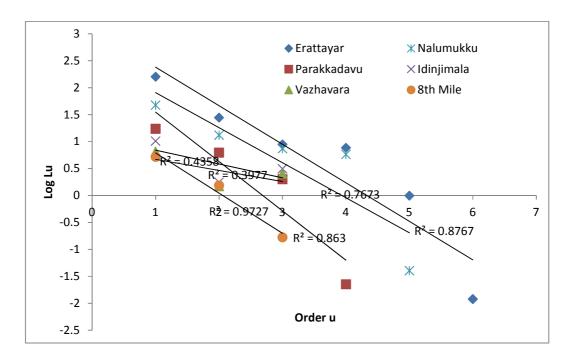


Figure 7 Order u vs Log length of streams (Log Lu) – Erattayar Watershed

Areal Aspects

Erattayar watershed and its sub-watersheds selected namely, Idinjamala, Nalumukku, Parakadavu, Vazhavara, 8th mile and Kamakshy were taken for studying the relationship between area and length. The logarithm of the area of each sub-basin is plotted against logarithm of stream length which shows a linear relationship, figure 8.

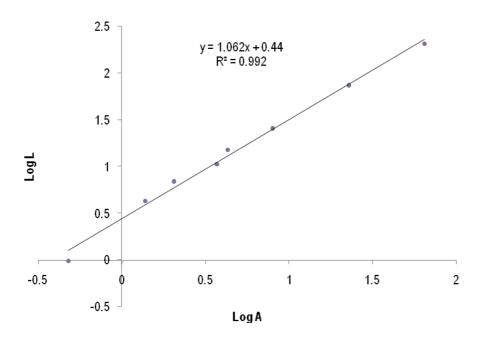


Figure 8 Area vs Stream Length of Erattayar Watershed

Drainage Density and Stream Frequency

The drainage density and stream frequencies of different sub-basins and the entire basin of Erattayar are given in table 5. Lesser the stream frequency longer the time to peak discharge because of low runoff rates due to a lesser number of streams. The travel time by water within the basin is controlled by Drainage Density. Generally, drainage density has a low valuein regions underlain with highly resistant permeable material with vegetative cover and low relief. High drainage density is observed in the regions of weak and impermeable subsurface material and sparse vegetation and mountainous relief. Drainage density above 2.5km/km² is considered to be a high value and less than 2.0 km/km² as a low value. Table 5 indicates that the entire watershed is having a high drainage density indicating that the watershed is having sparse vegetation and mountainous relief.

Basin Shape

The form factor (Rf), circularity ratio (Rc), and elongation ratio (Re) for the sub-basins and the entire Erattayar watershed is given in table 5. Basins with high Rf have high peak flows of

shorter duration, whereas elongated sub-watersheds with low Rf have low peak flow of longer duration. Erattayar, Thankamani, Parakkadavu, and Nalumukku have Rf indicating that they have developed into quite circular to a rectangular shape.Kamakshy, 8th mile, Vazhavara and Idinjamala with low Rf is more or less elongated with lower peak flows of longer duration. Rc is influenced by the length and frequency of stream, geological structures, land-use/land-cover, climate, relief and slope of the basin. The values of Re vary from 0.6 to 1.0 over a wide variety of climatic and geologic type. Values close to 1.0 are typical of the region of very low relief, whereas values in the range 0.6 to 0.8 are usually associated with high relief and steep ground slope (Strahler inVenTe Chow, 1964). It can be grouped into three classes namely Circular (>0.9), Oval (0.9 – 0.8) and less elongated (<0.7). Table 5 shows that Re varies from 0.587 to 0.908, which says that majority of the area has high relief and steep ground slope.Rc is a significant ratio that indicates the dendritic stage of a watershed. Low, medium and high values of Rc indicate young, mature and old stages of the life cycle of the tributary watershed. Watershed morphology has profound impacts on the watershed hydrology.

Relief Ratio (Rh)

It indicates the overall steepness of a drainage basin and is an indicator of the intensity of erosion processes operating on the slope of the basin. Rh normally increases with decreasing drainage area and size (Gottschalk in VenTe Chow, 1964). The relief ratio of Erattayar sub-watersheds ranges between 0.05 to 0.173.

Constant Channel Maintenance (C)

The values of C for the study area vary from 0.283 to 0.49. Thus the sub watersheds are under the influence of high structural disturbance, low permeability, steep to the very steep slope and high surface runoff.

Profile

The longitudinal profile along two sections are shown in figure 9 and 10.

Table 5. Areal And Relief Aspects Of The Basin And Sub-Basins Of Erattayar Watershed

Basin/Sub- basin	Drainage Area Au [km2]	Form Factor Rf	Circularity Ratio Rc	Elongation Ratio Re	Drainage Density D (per km)	Constant of Channel Maintenance C	Stream Frequency	Relief Ratio R
Erattayar	64.6	0.647	0.327	0.908	3.187	0.314	4.892	0.054
Thankamani	0.48	0.530	0.827	0.821	2.040	0.490	2.083	0.173
Kamakshy	1.38	0.270	0.500	0.587	3.086	0.324	5.072	0.124
8th mile	2.05	0.420	0.685	0.731	3.383	0.296	4.390	0.153
Vazhavara	3.7	0.300	0.540	0.619	2.866	0.349	4.054	0.050
Idinjamala	4.3	0.2871	0.509	0.605	3.530	0.283	6.744	0.065
Parakadavu	7.98	0.5526	0.440	0.839	3.219	0.311	4.887	0.079
Nalumukku	22.8	0.5396	0.322	0.829	3.249	0.308	4.605	0.082

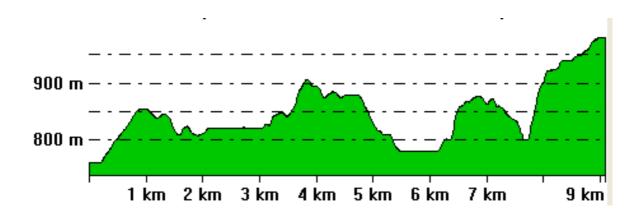


Figure 9 Longitudinal Profile Along Maximum Basin Length

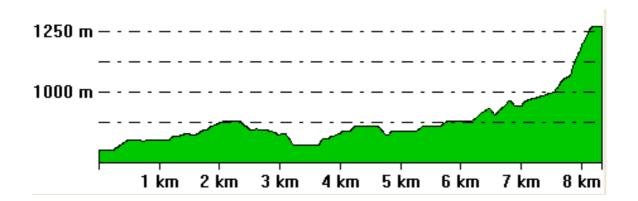


Figure 10 Longitudinal Profile From Highest Elevation Point To Outlet

HYDROLOGICAL STUDIES

ANALYSIS OF RAINFALL DATA

Rainfall Data

Daily rainfall data collected from Thankamani and Pathammile is used to arrive at the average rainfall of the Erattayar watershed. The average annual rainfall in Erattayar watershed is 2634 mm. About 58 percent of the rainfall in the watershed is received during the south-west monsoon [June-August], 28 percent during north-east [September-November] and the remaining 14 percent during the other six months [December-May], as is given in table 6. The vagaries of nature bring about the late onset of monsoon and early disappearance; these trends lead to drought conditions for short period during many a year. As indicated in the table rainfed cultivation is possible only during the monsoon period. It is realized that for the rest of the year irrigation is essential for seasonal crops and most the plantation crops. Figure 11 gives the monthly average rainfall in the Erattayar watershed.

Table 6 Monthly Rainfall in the Erattayar Watershed

MONTH	2007	2008	2009	Average		
Jan	0	9.5	6.26	5.3		
Feb	15.8	58.85	5	26.6		
Mar	0	161.15	109.7	90.3		
Apr	188.3	79	101.1	122.8		
May	122.9	28.35	112.6	88.0		
Jun	411.5	392.8	416.3	406.9		
Jul	828.4	597.8	605.15	677.1		
Aug	318.25	650.05	362.25	443.5		
Sep	425.2	270.235	284.75	326.7		
Oct	333.1	323.55	192.5	283.1		
Nov	97.9	88.25	201.2	129.1		
Dec	67.8	9.1	24.2	33.7		
Annual	2809	2669	2421	2633		

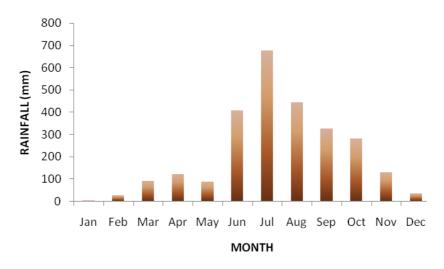


Figure 11 Monthly Rainfall in Erattayar Watershed

Estimation of Rainy Days

Data collected from Thankamani and Pathammile for three years were analyzed and the number of rainy days was estimated for Erattayar watershed. On average, the watershed has 145 rainy days per year. This information on rainy days is expected to be useful to ascertain the requirement of irrigation and the possibility of utilizing rainwater directly for agricultural purposes. The average number of rainy days per month for the watershed is given in Table 7.

Table 7 Average Number of Rainy Days Per Month
- Erattayar Watershed

Month	Number of Rainy Days
January	1
February	1
March	8
April	4
May	8
June	22
July	28
August	26
September	19
October	15
November	10
December	3

ESTIMATION OF POTENTIAL EVAPOTRANSPIRATION

Estimation Techniques

Knowledge of evapotranspiration from a watershed is an essential requirement in planning and design of irrigation systems. There are numerous approaches for the estimation of potential evapotranspiration, none of which is generally applicable for all purposes. For all hydrologic studies concerned with water allocation, water balance studies, reservoir operations etc. information on potential evapotranspiration from the watershed is required.

Evapotranspiration is the process by which water present in water bodies, soil & vegetation, and plantation is converted into vapour state and returned to the atmosphere. It consists of evaporation loss (E) from water bodies and soil and transpiration loss (Tr) from vegetation and plantation (Gupta, 1989). The evapotranspiration losses (Et) (ie.,E+Tr) are important components in the hydrologic process and play a dominant role in long-term water balance in a watershed. Field observations of E or Tr or Et do not exist in plenty. Available records are often difficult to interpret because the methodology followed in collection of data is not often known fully. To overcome the difficulty, the estimation of potential evapotranspiration (PET) is extrapolated as a substitute for field observations. PET or potential evapotranspiration is the sum of maximum evaporation and transpiration rate that occur when water is available all around the year and vegetative cover is dense and climate condition is normal (Linsley et. al. 1988).

The PET loss is often interpreted as consumptive use to denote the loss of water by evapotranspiration in an irrigated agricultural field. Historically the concept of PET was first attributed by Thronthwaite (Thronthwaite et. al. 1944). The PET is an indication of optimum crop-water requirement. Most of the available formulas to estimate the PET in a region is empirical in nature and dependent on the known correlation between PET and one or more meteorological variables such as radiation, temperature, wind velocity, and vapour pressure difference. There are many practical as well as empirical methods in evaluating the values of potential evapotranspiration or PET. The methods can be listed as follows:

i) Water Budget determination

- ii) Lysimeter determination
- iii) Field plot determination
- iv) Estimation from meteorological data

Several methods are available to predict PET using climatological data. The monthly potential evapotranspiration for the Erattayar watershed was computed using Thornwaite's method, Hargreaves Method and Penman Monteith Method.

Computational Methods

Thornwait's Approach

Thornwaite's equation is given by:

$$PET = 16 \left(\frac{L}{12}\right) \left(\frac{N}{30}\right) \left(\frac{10T_a}{I}\right)^{\alpha} \tag{13}$$

where,

Ta is the average daily temperature of the month being calculated

N is the number of days in the month being calculated

L is the average day length of the month being calculated

$$\alpha = (6.75 \times 10^{-7})I^3 - (7.71 \times 10^{-5})I^2 + (1.79 \times 10^{-2})I + 0.49$$
(14)

$$I = \sum_{i=1}^{n} \left(\frac{T_{ai}}{5}\right)^{1.514} \tag{15}$$

Hargreaves Equation

In the equation developed by Hargreaves the most important parameters are temperature and solar radiation. The simplied form of the equation is :

$$ETo = Ci(Tmed+ 17.78) (Tmax- Tmin)0.5 Ra$$
(16)

where,

Ra = water equivalent of extraterrestrial radiation in mm/day, Tmax, Tminand Tmedare the daily maximum, minimum and mean air temperatures (°C), respectively; Ci= 0.0023 is the empirical constant proposed by Hargreaves and Samani (1985)

Penman MonteithEquation

$$ETo = \frac{0.408\Delta(R_n - G) + \gamma \frac{900}{T + 273} u_2 (e_s - e_a)}{\Delta + \gamma (1 + 0.34 u_2)}$$
(17)

where,

 ET_o = Reference crop evapotranspiration in mm/day

 R_n = Net radiation at the crop surface in MJm⁻²/day

 $G = \text{soil heat flux density in MJm}^{-2}/\text{day}$

T = mean daily temperature at 2m height in °C

 u_2 = wind speed at 2m height in m/s

 e_s = saturation vapour pressure in kPa

 e_a = actual vapour pressure in kPa

 $e_s - e_a$ = saturation vapour pressure deficit in kPa

 Δ = slope vapour pressure curve in kPa °C⁻¹

 γ = Psychrometric constant in kPa °C⁻¹

The computation for Penman Monteith method was done using the CROPWAT software of FAO.

Computation from Evaporation Pan Data

Evaporation pan data could be converted to evaporation from free water surface with pan coefficient to obtain PET in the absence of measured PET values. Different pan coefficients have been suggested for different locations. A coefficient of 0.8 has been adopted here for the Class A pan as per the FAO Irrigation and Drainage Paper No.24, Table 18.

The monthly potential evapotranspiration for the Erattayar watershed has been estimated using Thornwaite, Hargreaves and Penman-Monteith Methods. Figure 12 gives the monthly variations of PET obtained using the different methods. This was also computed from pan evaporation data collected from the Thankamani yard. Table 8 gives a comparison of the PET values obtained by Penman Monteith Method and the open pan method.

Table 8 Monthly Estimate of Potential Evapotranspiration in Erattayar Watershed

MONTH	Potential Evapotranspiration mm/day					
MONTH	Penman Monteith	Class A Pan				
January	3.33	3.26				
February	3.61	3.74				
March	4.34	3.98				
April	4.07	3.58				
May	3.70	3.19				
June	2.96	3.07				
July	2.75	2.66				
August	3.11	2.87				
September	3.60	3.00				
October	3.18	3.30				
November	3.20	3.35				
December	3.35	3.33				

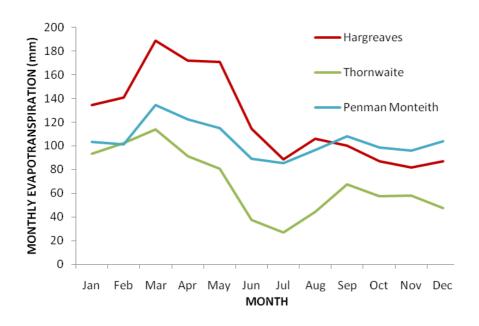


Figure 12 Monthly Evapotranspiration By Different Methods

RUNOFF CHARACTERISTICS

Rating curve technique and area-velocity method were used to compute the runoff at each gauging station. The stage-discharge relationship has been established with the observations of discharge for various stages of river flow. The area of cross-section was multiplied by the mean velocity to quantify the discharge. The rate of discharge was converted to daily and monthly values. Daily water levels observed at the gauging stations were converted to discharge with the help of stage-discharge rating curves. Stage-discharge rating curves for the seven selected stations are given in figures 13 to 20computed from the collected data.

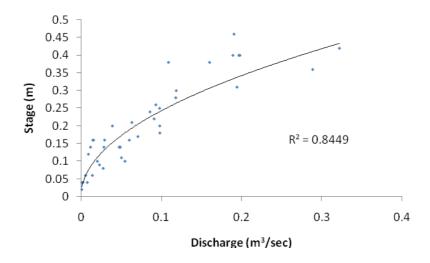


Figure 13 Stage discharge curve at Thankamony

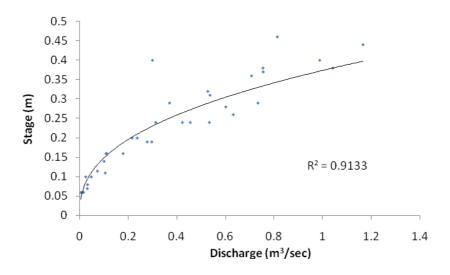


Figure 14 Stage discharge curve at Kamakshy

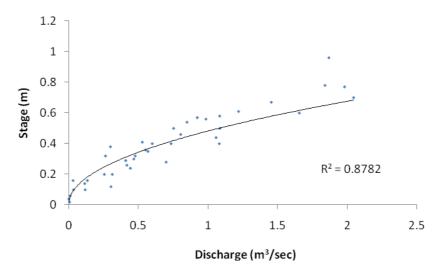


Figure 15 Stage discharge curve at Parakadavu

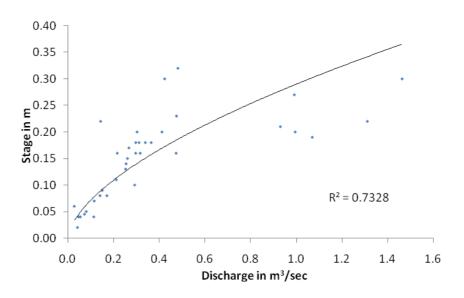


Figure 16 Stage discharge curve at Idinjamala

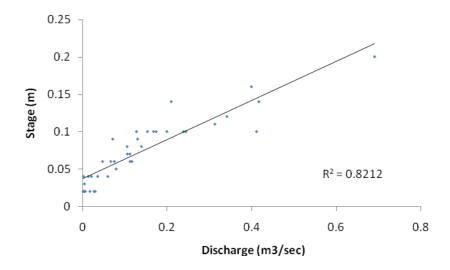


Figure 17 Stage discharge curve at 8th mile

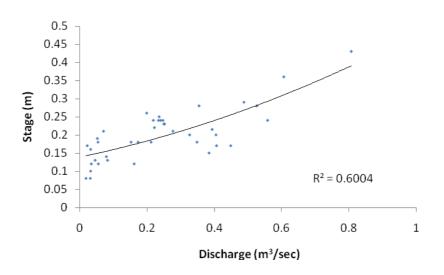


Figure 18 Stage discharge curve at Vazhavara

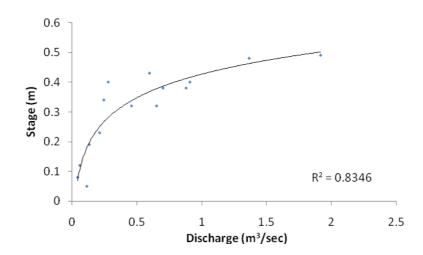


Figure 19 Stage discharge curve at Nalumukku - curve 1

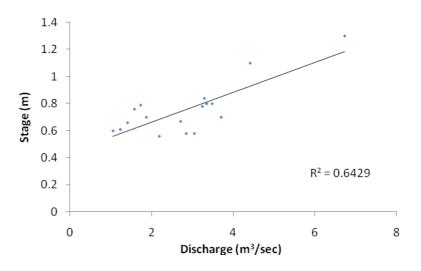
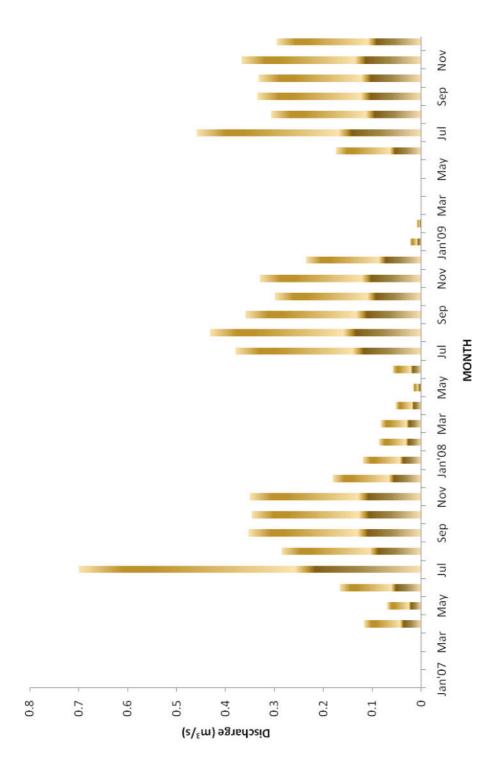



Figure 20 Stage discharge curve at Nalumukku – curve 2

Monthly streamflow values computed for two stations, Vazhavara and Idinjamala are given in figures 21 and 22.

Figure 21 Mean monthly discharge at Vazhavara

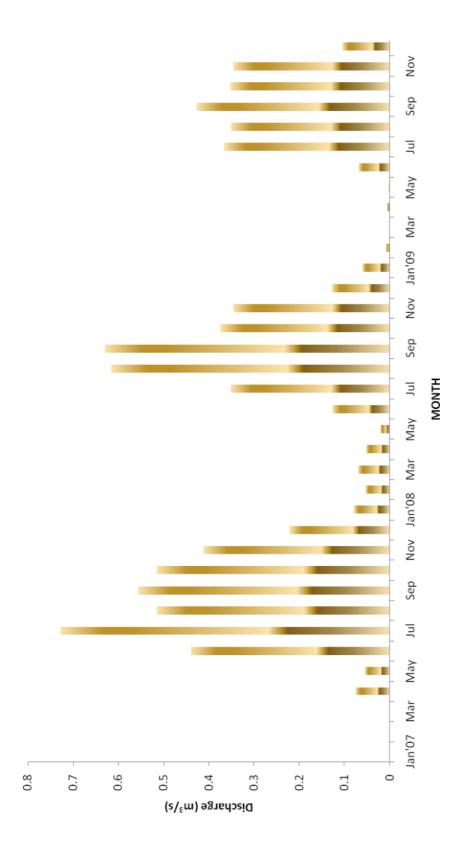


Figure 22Monthly mean discharge at Idinjamala

INFILTRATION STUDIES

The infiltration characteristic of soil is one of the basic and important parameters in many hydrologic problems such as runoff estimation, soil moisture budgeting, irrigation scheduling, drainage requirements, and water management. It is a single parameter to measure the composite effect of texture, structure, porosity and hydraulic conductivity of the soil. There are three different approaches to the determination of infiltration rates. Parr and Bertrand (1960) in a review article classified instruments as being: (i) those in which infiltration is determined as the difference between applied water and runoff, usually employing raindrop simulators; (ii) those in which water is impounded inside a cylinder; (iii) those which attempt to determine infiltration from rainfall data

Cylinder infiltrometers (Ring infiltrometers) are the most widely used method in the field for measuring the cumulative infiltration. A major drawback of the cylinder infiltrometer is that the infiltrated water percolates laterally at the bottom of the ring. Thus the cylinder is not truly representing the area through which the infiltration is taking place. This drawback is rectified to a large extent in the double-ring infiltrometer.

Infiltration study was conducted during the period April 2007 at Idinjamala where the soil texture is sandy clay loam. Double ring infiltrometer with diameters 30cms and 60cms and height 30cms were used for conducting the test. The cylinders were installed at 10cms deep into the soil. Water was then applied in both the inner and outer rings to maintain a constant depth of about 10cms. Water was replenished after the level falls by about 1cm. The water depths in the inner and the outer rings were kept the same during the observation period. Readings of volume of water added at successive time intervals to maintain constant depth of flooding in the inner ring were taken. As the purpose of the outer ring is to suppress the lateral percolation of water from the inner ring, the water added to it need not be measured though the water was added to maintain the same depth as in the inner ring. The experiment was carried out till a constant infiltration rate was obtained. The rate of infiltration and time elapsed were noted down in standard formats. Figure 23 show the curve of the rate of infiltration on elapsed time and cumulative infiltration on elapsed time for the watershed.

The infiltration study conducted at Idinjamala (Latitude 9°49'54"N and Longitude 77°04'04"E) in Erattayar watershed show an initial infiltration rate of 60cm/hr and after three and a half hours it reduces to 8 cm/hr and remains constant. The soil type is observed as sandy loam with a moisture content of 23.4% at the time of the test. Figure 23 shows the infiltration curve at Idinjamala.

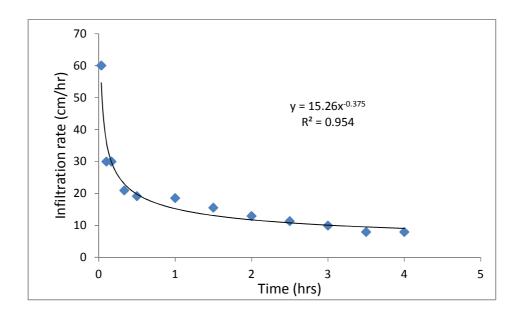


Figure 23 Infiltration Curve atIdinjamala Watershed

A similar study conducted at different points in the Pooppara tribal colony which lies between 9° 58' 10" and 9° 58' 30" N latitude and 77° 11' 28" and 77° 12' 20" E longitude during the year 2005 shows that the initial infiltration rate varies from 34.31 cm/hr to 105.11 cm/hr and arrives at a steady value of 6.6 cm/hr to 24 cm/hr after two and a half hours where the soil is sandy clay loam. This area also lies in the Periyar river basin in the Idukki district of Kerala State (Celine et. al., 2011).

GROUND WATER STORAGE AND SOIL MOISTURE FLUCTUATIONS

The groundwater recharge depends upon the rock or soil formation and the average annual rainfall of the area. Six monitoring wells were selected to observe the groundwater fluctuations in the area. It is observed that the water table rises maximum during the south-west monsoon season. A general decline in the water table is observed from November to May.

The water table fluctuation data was used to compute the change in groundwater storage. The change in ground water storage has been arrived at considering the volume of aquifer saturated or de-saturated in different months (CGWB, 1978). Theissen polygon approach was adopted to get the area-wise weightage. The weighted change in groundwater level over a period multiplied by the specific yield and the involved area gives the total volume of aquifer material either saturated or de-saturated depending upon the rise or fall in the water level. Specific yield is the water removed from the unit volume of the aquifer by pumping or drainage and is expressed as the percentage volume of the aquifer. The average specific yield taken is 2.5%, as recommended by CGWB.

From the change in groundwater storage, it is observed that the water table rises very near to the ground surface during the south-west monsoon, especially in the valley portion. The trend shows that the recharge in groundwater storage takes place immediately after the rain occurs. After the monsoon season, a general decline in the water table has been observed for the entire summer season. Figure 24 shows the changes in the groundwater storage the Erattayar watershed.

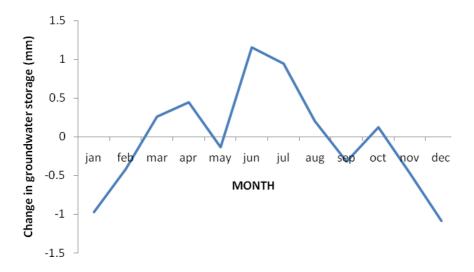


Figure 24 Periodic Change In Groundwater Storage

For determining soil moisture, ten representative sites were selected in the watershed. Bimonthly sample collection was done and the moisture content of the soil samples determined by the gravimetric method. Figure 25 gives the percentage soil moisture variations in the Erattayar watershed. Table 9 shows the average monthly groundwater and soil moisture fluctuations in the watershed. The results show that an average minimum moisture level of 16.47 percent has been observed for the month of January and a maximum of 26.88 percent for the month of August.

Figure 25 Periodic Soil Moisture Fluctuations by Gravimetric Method

Table 9 Groundwater Storage and Soil Moisture Fluctuations in the Erattayar Watershed

MONTH	Avg. Groundwater Storage, mm	Percentage Soil Moisture
Jan	-0.968	16.47
Feb	-0.417	16.61
Mar	0.264	23.69
Apr	0.450	21.66
May	-0.136	16.40
Jun	1.155	26.00
Jul	0.950	26.28
Aug	0.205	26.88
Sep	-0.318	23.47
Oct	0.122	25.42
Nov	-0.462	24.24
Dec	-1.083	20.24

SHEET EROSION AND SEDIMENT TRANSPORT STUDIES

The presence of sediments in streams and rivers has its origin in soil erosion. The erosion is a result of series of complex and interrelated natural processes that would loosen and move away from the soil and rock materials under the action of water, wind, and other geological factors. Soil erosion may be classified into two general types: sheet erosion and channel erosion.

Sheet erosion phenomenon in the Erattayar watershed and the sediment transport in its stream has been studied. Water samples were collected once in a week for determining the quantity of suspended sediments. An attempt was made to estimate the sheet erosion from the Erattayar watershed by using the Universal Soil Loss Equation (USLE). A relationship between rainfall and erosion index has been established for predictive purposes. It is observed that the soil loss is considerable during the monsoon season. Water samples were analyzed for suspended sediments and the sediment rating curve was prepared. The study is expected to be useful for the quantitative determination of soil loss through sheet erosion and to predict the suspended load if streamflow data is available. The relationship may have applicability in identical watersheds in the Western Ghats region.

Estimation Of Sheet Erosion

The universal soil loss equation developed by the Agricultural Research Service of the United States Department of Agriculture (1961) was made use for computing sheet erosion from the Erattayar watershed. This equation considers all the factors affecting erosion namely, the rainfall regime, vegetal cover, soil type, land slope and land use and is given by the equation:

$$A = RKLSCP \tag{18}$$

in which A is the average soil loss in tons/hectare/year, R the rainfall factor, K the soil erodibility factor, L the slope length factor, S the slope gradient factor, C the crop management factor and P the supporting conservation practice factor.

R is determined by the following relationship reported by Wischmeir and Smith (1958):

$$R = \sum \frac{EI_{30}}{100} \tag{19}$$

where E is the kinetic energy (metric tones) and I_{30} the maximum 30 – minute intensity of rainfall (cm/hr). The kinetic energy of each storm is given by

$$E = 210 + 89 \log_{10} I \tag{20}$$

where I is the rainfall intensity (cm/hr).

Estimation Of Suspended Load

The total sediment in a stream or river may be split into two parts: bed load and suspended load. Bed load is that sediment in the bed layer moved by siltation, rolling or sliding, whereas suspended load remains in suspension in the flowing water for a considerable period of time.

Study was conducted to determine the suspended load in the tributary of Erattayar. Water samples were collected once in a month from Nalumukku. The daily discharge was also

collected from the station. The samples were filtered and sediments oven-dried. The ratio of the dry weight of sediment to the total volume of the sample is the sediment concentration, expressed in parts per million or mg/litre. The sediment load (kg/sec) was computed by multiplying the sediment concentration and the daily discharge. The sediment rating curve relating to the suspended sediment discharge and water discharge was plotted as shown in figure 26. The relationship between suspended load and discharge is given by the equation:

$$S = KQ^{n} \tag{21}$$

where S is the suspended load in kg/sec, Q the discharge in m³/sec, K and n are constants. The regression equation obtained for the Nalumukku station is

$$S = 0.201Q^{1.251} \tag{22}$$

The relationship developed for the suspended sediment load would be useful for computing the suspended load for varying discharges. This relationship may have applicability in identical watersheds in the Western Ghat region.

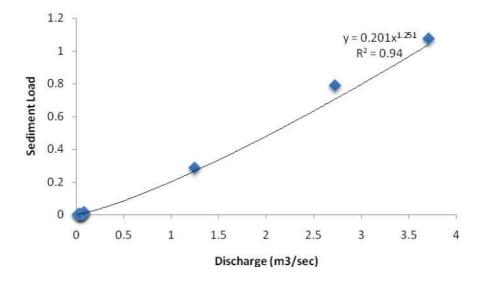


Figure 26 Sediment Rating Curve For Erattayar Watershed

USING SOIL AND WATER ASSESSMENT TOOL (SWAT)TO SIMULATE RUNOFF

The Soil and Water Assessment Tool (SWAT) was developed in the early 1990s by the U. S. Department of Agriculture, Agricultural Research Service (USDA-ARS) and it has undergone many changes and improvements since its formation. The SWAT model is a direct descendant of the Simulator for Water Resources in Rural Basins (SWRRB) model, which was designed to simulate management effects on water and sediment movement for ungauged rural basins across the United States.

Hydrological processes simulated by the SWAT model include precipitation, infiltration, surface runoff, evapotranspiration, lateral flow and percolation. Commands are included for routing flows through streams and reservoirs, adding flows and using measured data for point sources. SWAT is incorporated into a Geographical Information System (GIS) platform using the ArcView and SWAT (AVSWAT) interface tool. This platform provides the user with a complete set of GIS tools for developing, running and editing hydrologic and management inputs and finally for calibrating the model. SWAT2005 version of SWAT uses an upgraded version of AVSWAT, termed AVSWAT-X. Presently SWAT 2012 with ArcGIS as the GIS platform is in use and is adopted for this study.

SWAT allows several different physical processes to be simulated in awatershed. For modelling purposes, a watershed is partitioned into many sub-watersheds or sub-basins. The use of sub basins in a simulation is particularly beneficial when different areas of the watershed are dominated by land uses or soils dissimilar enough in properties to impact hydrology. By partitioning the watershed into sub-basins, the user is able to reference different areas of the watershed to one another spatially.

Input information for each sub-basin is grouped or organized into the following categories: climate; hydrologic response units or HRUs; ponds/wetlands; groundwater; and the main channel, or reach, draining the sub-basin. Hydrologic response units are lumped land areas within the sub basin that are comprised of unique land cover, soil and management combinations. No matter what type of problem is studied with SWAT, water balance is the driving force behind everythingthat happens in the watershed. To accurately predict the movement of

pesticides, sediments, or nutrients, the hydrologic cycle as simulated by the model must conformto what is happening in the watershed.

Simulation of the hydrology of a watershed can be separated into twomajor divisions. The first division is the land phase of the hydrologic cycle. The land phase of the hydrologic cycle controls the amount of water, sediment, nutrient and pesticide loadings to the main channel in each sub-basin. Thesecond division is the water or routing phase of the hydrologic cycle which can be defined as the movement of water, sediments, etc. through the channel network of the watershed to the outlet.

SWAT simulation is based on the water balance equation:

$$SW_{t} = SW_{o} + \sum_{i=1}^{t} (R_{day} - Q_{surf} - E_{a} - w_{seep} - Q_{gw})$$
(23)

where,

 SW_t = soil water content at time t,

 SW_o = initial soil water content,

t = time (in days),

 R_{day} = amount of precipitation on day i,

 Q_{surf} = amount of surface runo on day i,

 E_a = amount of evapotranspiration on day i,

 w_{seep} = water percolation to the bottom of the soil profile on

SWAT's input parameters are physically based and can be varied for calibration within a given uncertainity range defined in SWAT tool input and output file documentationversion 2005. SWAT model calibration can be completed in two ways: manual and (or) auto-calibration. Manual calibration requires the user to compare measured data to simulated data and to use judgment to determine whether simulated data are acceptable. Auto-calibration can be done using the SWAT CUP software. SWAT Calibration and Uncertainty Program (SWAT-CUP) is a computer program which provides the calibration, validation and sensitivity analysis of SWAT models. SWAT-CUP is a public domain program, and is freely downloadable from internet. It

involves several methods such as SUFI2, PSO, GLUE, ParaSol, and MCMC which can be chosen for the purpose of calibration and uncertainty analysis. This access the SWAT input files and runs the SWAT simulations by modifying the given parameters. The storage of the value of the objective function and the modification of parameters is the basis for the comparison.

Statistical methods can be used to assist in evaluation of simulation results and to help adjust model parameters. Santhi et al. (2001) and Coffey et al. (2004) used calibration and validation of SWAT for streamflow, sediment, nitrogen and phosphorous loss simulation for different watersheds. They recommended using two statistical measures, the Nash-Sutcliff Index (N_{SE}) and the square of the correlation coefficient (R^2), to assess the simulation results for monthly data.

The R^2 value is a measure of the strength of the linear correlation between the predicted and observed values. The N_{SE} value is a measure of the predictive power of the model. N_{SE} is defined by the equation :

$$N_{SE} = 1 - \frac{\sum_{t=1}^{T} (Q_o^t - Q_m^t)^2}{\sum_{t=1}^{T} (Q_o^t - \overline{Q}_o)^2}$$
(22)

where

 N_{SE} = Nash-Sutcliffe coefficient

 Q_o = observed discharge

 Q_m = modeled discharge

 Q_o = mean observed discharge

 Q_t = discharge at time t

A value of 1 for N_{SE} indicates a perfect match between simulated and observed data values. A value of 1 for the R^2 also indicates a perfect linear correlation between simulated and observed data values. The overall reliability of model simulations depends on factors that vary from study to study. Thus, while the statistical parameters R^2 and N_{SE} provide a means for assessing the reliability of model simulations for a given input data set, there are no standards or range of

values for the statistical parameters that definitively indicate acceptable model performance. In general, the longer the time period selected for simulation and the more high quality measured data that are available for input for both calibration and validation periods, the more reliable are the simulations. In addition, simulations of data averaged over longer time periods, such as annual or monthly mean streamflows, are more reliable than simulations of daily data.

ArcSWAT MODEL APPLICATION TO ERATTAYAR WATERSHED

All the parameters required to run a watershed model may not be measured directly. Some parameters must be estimated. The watershed model must be calibrated by adjusting some or all the estimated parameters to utilize the model for effective future management practices. After calibration, the model must be tested and validated by using an independent set of measured data, without any additional change in model parameters. A calibrated and validated watershed model generally is considered capable of making reasonable simulations of streamflow under varying climate or land-use change scenarios.

Here in this study, the Soil and Water Assessment Tool (ArcSWAT) version 2012 watershed model was first run without calibration for the years 2007 and 2008, to identify the parameters to which the model is most sensitive. The model then was calibrated by adjusting those parameters to reasonably predict the measured streamflow. The model was validated using the monthly flow values for the year 2009 to demonstrate the model's capability of reasonably simulating streamflow in the Erattayar watershed.

Input Data

Basin topographic information for the Erattayar watershed was obtained from Digital Elevation Model (DEM) data. The ArcSWAT interface in the model is unable to predict the correct topography and the streamflow paths for the watershed for low-resolution DEMs. ASTERDEM of 30m resolution is used here for watershed delineation. In SWAT, a watershed is divided into multiple sub-watersheds, which are then further subdivided into hydrologic response units (HRUs) that consists of homogeneous land use, management and soil characteristics (Neitsch et al., 2005). Here the Erattayar watershed is divided into 79 sub-watersheds. Of this the sub-

watersheds numbered 8 (Parakkadavu), 12 (Idinjamala), 14 (8thmile) and 42 (Vazhavara) were selected for calibration. Figure 27 shows the DEM used for watershed delineation in SWAT simulation. Figure 28 gives the sub-watersheds delineated by SWAT 2012 for model analysis. The land use and soil maps are shown in figures 4&3 were used with their details suited for SWAT simulation.

Daily precipitation and temperature data for the years 2007 and 2008 were given as input data. Measured streamflow from stations Parakkadavu, Idinjamala, 8th mile, and Vazhavara were used for model calibration and validation. Mean monthly streamflow data for the years 2007 and 2008 for the stations Parakkadavu, Idinjamala, 8th mile, and Vazhavarawere used for the calibration of the model. The calibrated model was then tested with the data for the year 2009 for testing and validating the model. For the other three stations continuous data could not be collected due to various reasons.

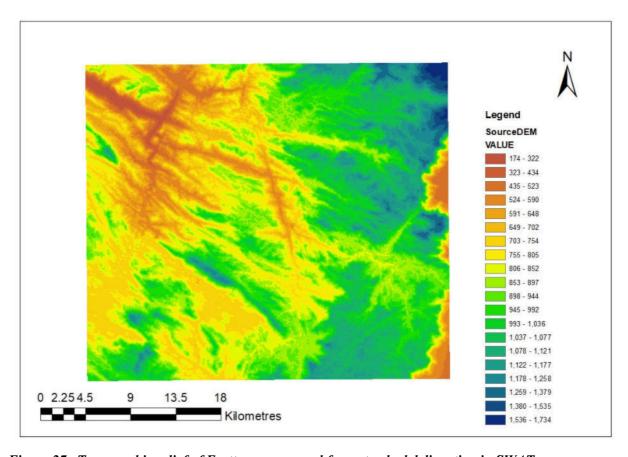


Figure 27 Topographic relief of Erattayar area used for watershed delineation in SWAT simulation

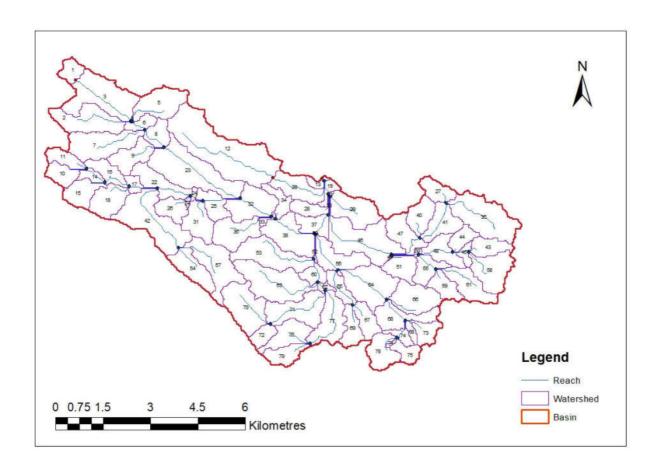


Figure 28 SWAT delineated sub-watersheds in Erattayar Watershed

Model Calibration

With a complex watershed model having a large number of model input parameters, a sensitivity analysis is a process of varying model input parameters over a reasonable range and observing the change in the model output. The magnitude of change in model output for various changes in input parameters provides a key for determining which parameters may need adjustment for model calibration. For this study, a preliminary sensitivity analysis based on all available climate and hydrologic input data for the years 2007 and 2008 was performed using SWAT CUP software.

Results from the calibrated simulation of mean monthly discharge for 2007 and 2008 for selected stations are compared to recorded discharges. Table 10 to 13 give the sensitive parameters obtained for the four stations using SWAT CUP model.

Table 10 Sensitive parameter values for thesimulation of streamflow at Idinjamala

Rank	Parameter	Fitted value
1	Alpha_bf	0.017
2	SOL_K	-0.5808
3	SOL_AWC	0.097
4	CN2	0.1972
5	CH_K2	92.375
6	GW_DELAY	35.46
7	GwQmn	0.042
8	GW_Revap	0.1678
9	CH_N2	0.0891
10	ESCO	0.8402

Table 11 Sensitive parameter values for the simulation of streamflow at Vazhavara

Rank	Parameter	Fitted value
1	CN2	-0.006
2	Alpha_bf	0.019
3	CH_K2	110.875
4	SOL_K	-0.142
5	GW_DELAY	138.78
6	GwQmn	0.874
7	GW_Revap	0.1918
8	ESCO	0.8558
9	CH_N2	0.2409
10	SOL_AWC	0.0334

Table 12 Sensitive parameter values for the simulation of streamflow at Parakkadavu

Rank	Parameter	Fitted value
1	Alpha_bf	0.073
2	CH_K2	128.125
3	GW_DELAY	426.9
4	ESCO	0.827
5	CN2	0.0844
6	GwQmn	1.574
7	GW_Revap	0.107
8	CH_N2	0.1917
9	SOL_AWC	0.193
10	SOL_K	0.2928

Table 13 Sensitive parameter values for the simulation of streamflow at 8th mile

Rank	Parameter	Fitted value
1	Alpha_bf	0.051
2	CN2	0.138
3	GW_DELAY	321.9
4	ESCO	0.8338
5	SOL_AWC	0.1798
6	GwQmn	1.81
7	GW_Revap	0.1966
8	CH_N2	0.1851
9	CH_K2	92.625
10	SOL_K	0.264

In this calibration run, SWAT 2012 was successful in predicting flows in the Erattayar watershed at the sub-watershed points. The performance of the model has been evaluated graphically and numerically. Graphical evaluation is done with the scattered plot as given in figures 29 to 32.

Simulated discharge is in good agreement with the observed discharge values. To check the predictive capability of the SWAT model, as suggested by Santhiet. al., (2001) and Coeffy et. al., (2004) the correlation coefficient (R^2) and the Nash-Sutcliffe model efficiency coefficient (N_{SE}) are computed. To avoid certain problems associated with R^2 , an index of agreement (d) given by equation (23) has been introduced by Willmott, 1981. This statistics reflects the degree to which the observed variable is accurately estimated by the predictive variable; d is not a measure of correlation in the formal sense but rather a measure of the degree to which a model's prediction is error-free. Moriasi et. al., (2007) suggested a general performance rating for the monthly time step for SWAT model. Accordingly if the performance statistics values are in the range N_{SE} > 0.65, RSR (root mean square error-observations standard deviation ratio)< 0.6 and percent bias (PBIAS)< 15% the model is good for prediction. Table 14 summarises the comparison statistics for the simulated and recorded monthly discharges for the calibrated the SWAT model for the years 2007 and 2008. The overall R^2 indicate a strong linear correlation between recorded and simulated mean monthly discharges for the calibration period.

Table 14 Statistics for the calibrated simulation of streamflow at Idinjamala, Vazhavara, 8th mile and Parakkadavu for 2007-2008

Station	N_{SE}	\mathbb{R}^2	d	PBIAS	RSR	
Idinjamala	0.865	0.872	0.965	-4.42	0.37	
Vazhavara	0.827	0.888	0.959	-19.36	0.42	
8 th mile	0.703	0.741	0.926	-1.50	0.54	
Parakadavu	0.872	0.873	0.964	1.56	0.36	

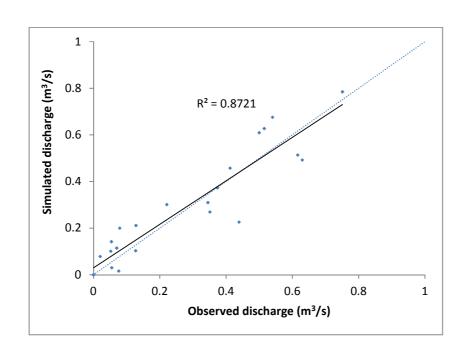


Figure 29 SWAT 2012 calibration result for Idinjamala station

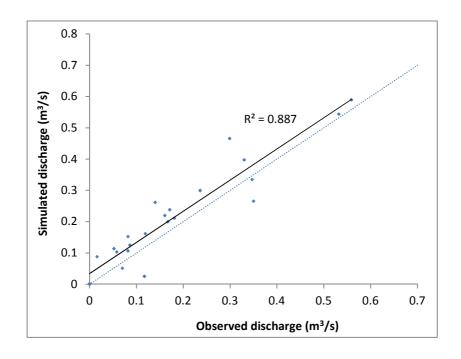


Figure 30 SWAT 2012 calibration result for Vazhavara station

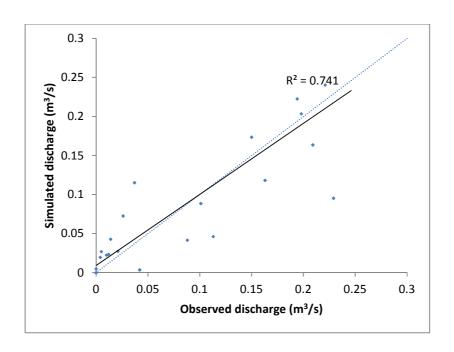


Figure 31 SWAT 2012 calibration result for 8th mile station

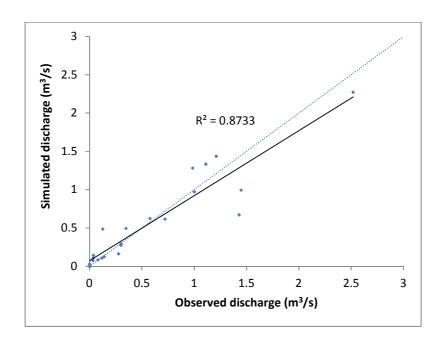


Figure 32 SWAT 2012 calibration result for Parakkadavu station

Model Validation

Streamflow data collected during the year 2009 were used for validation of the predictive capability of the SWAT model applied to the Erattayar watershed. As shown in Figures 33 to36, the calibrated SWAT model was successful in predicting the discharge for all the selected stations for the validation period. The comparison statistics for the measured and simulated mean monthly discharges for the validation period are shown in table 15. The R^2 values are very high indicating a strong linear relationship between simulated and recorded values. The N_{SE} values are also significantly high indicating that the simulated values are in a good match with the recorded values. The observed data for the station Kamakshy station which lies in the Parakkadavu subwatershed was not taken for the calibration of the model. The observed data for this station is now taken for validating the model. The three year's monthly discharge data were compared with the simulated discharge values at Kamakshy sub watershed. The statistics obtained are given in table 16 and the scattered plot is given in figure 37. Thus the predicted discharge values at Kamakshy using the calibrated SWAT model can be rated as very good. On this basis, the SWAT model is considered to be good for the simulation of mean monthly discharge in the Erattayar watershed.

Table 15 Statistics for the simulation of streamflow at Idinjamala, Vazhavara, 8th mile and Parakkadavu for 2009 (validation)

Station	N_{SE}	\mathbb{R}^2	d	PBIAS	RSR	
Idinjamala	0.878	0.929	0.968	-18.60	0.35	
Vazhavara	0.788	0.884	0.953	-11.70	0.46	
8 th mile	0.871	0.895	0.960	-10.36	0.36	
Parakadavu	0.827	0.834	0.950	-9.52	0.42	

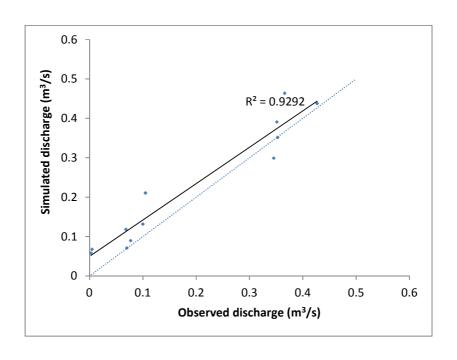


Figure 33 SWAT 2012 validation result for Idinjamala station

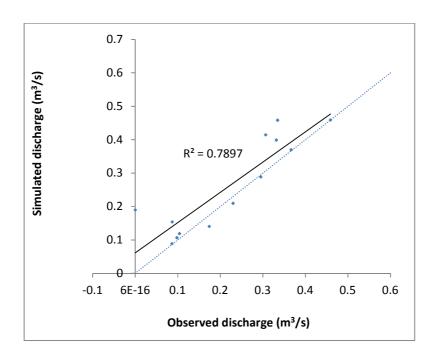


Figure 34 SWAT 2012 validation result for Vazhavara station

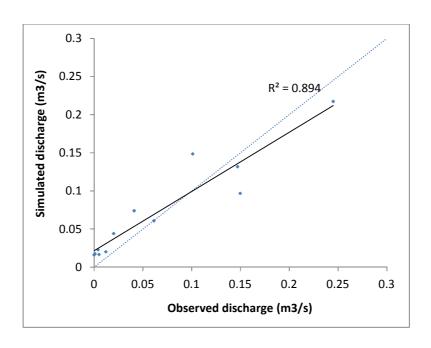


Figure 35 SWAT 2012 validation result for 8th mile station

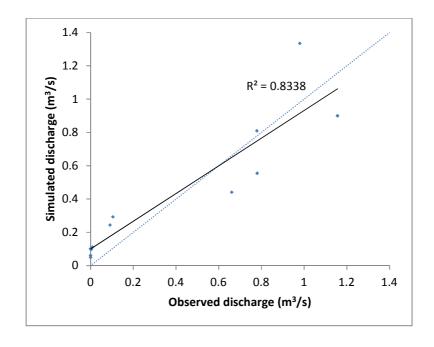


Figure 36 SWAT 2012 validation result for Parakkadavu station

Table 16 Statistics for the simulation of streamflow at Kamakshy (2007-2009)(validation)

Station	N_{SE}	R ²	d	PBIAS	RSR
Kamakshy	0.852	0.874	0.964	-11.69	0.385

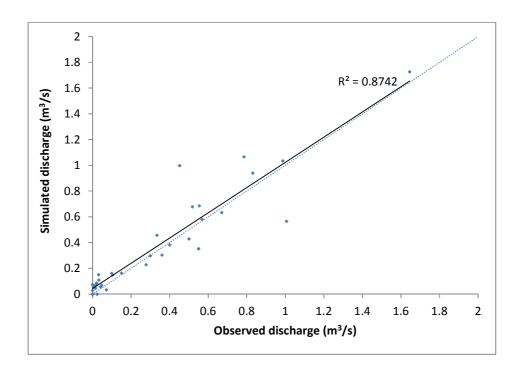


Figure 37 SWAT 2012 validation result for Kamakshy station

XI. Conclusions/Recommendations

Seven small watersheds which lie in the Erattayar watershed with an area of 64.6 km² situated between 09° 45' 30" and 09° 51' 00" N latitude and 77° 01' 00" and 77° 10' 00" E longitude has been selected for the study under this project. Erattayar watershed is mainly situated in the eastern highland region of KeralaState and is a part of the Periyar river basin. The lowest most valley portion of the watershed is at 720 m above the mean sea level and the highest point is at 1270 m above the mean sea level. The average slope is 18.33%. The entire watershed is having a mixed cultivation with seasonal crops like tapioca, plantain and other plantation crops like coffee, pepper, coconut, arecanut, etc. Few patches of cardamom cultivation are also found in the watershed. Daily data on rainfall, temperature, humidity, wind speed, and bi-weekly observations on discharge, soil moisture, water level, etc. were collected and analyzed. For the three years under study, the average annual rainfall received in the watershed is 2634mm with 58% during the south-west monsoon (June -August), 28% during the north-east monsoon (September-December), and remaining during the dry months (January-May). The annual average rainy days is 145. Comparing this data with the long term data of a nearby station, Chinnar of Water Resources Department, there is variation in total rainfall (3452mm) but the similarity is observed in percentage contribution (58%, 26% and 16% seasonally), and rainy days (142). The maximum temperature observed is 34°C and the minimum is 11°C. The monthly average potential evapotranspiration has been observed to vary from 2.75mm/day in July to 4.34mm/day in March. Stage discharge curves at seven gauging locations prepared. Continuous data could be collected for five stations only. For the other two stations, ie., at Thankamani and Nalumukku staff gauges get washed away due to high flow. The average monthly discharge values were computed for the five locations. An infiltration study was conducted at one location and the infiltration rate was found to be 60cm/hr initially and becomes constant at 8cm/hr in the sandy clay loam soil with a moisture content of 23.4%. Average soil moisture variation is observed to be 16.5% in January to 26.9% in August. Sediment rating curve has been developed for the watershed at Nalumukku.

The SWAT 2012 model was used to simulate streamflow for the selected watersheds. The rainfall, other climate data, soil moisture, evapotranspiration data, etc were taken as the input data

for the model in addition to the DEM, soil, and land use data as thematic layers. Two years of data were taken for calibrating the model. The most sensitive parameter in predicting the streamflow values was arrived for each station by using SWAT CUP software. The model was calibrated and validated for the prediction of flow at four stream gauging stations, Idinjamala, Vazhavara, 8th mile and Parakkadavu. The calibrated model was also validated with the data from the Kamakshy station. SWAT 2012 is found to be good in predicting mean monthly flows in the Erattayar watershed, with good accuracy. The average annual water yield per unit area for the sub watersheds obtained from the model simulation is 1400.71mm for Kamakshy, 2902.2mm for 8th mile, 1253.21mm for Vazhavara, 484.15mm for Idinjamala and 2032.04mm for Parakadavu sub watersheds. For the less elongated sub watershed (8th mile) the yield per unit area is observed to be high. The more elongated sub watershed, Idinjamala gives the lowest yield per unit area. As the watershed area increases yield per unit area decreases.

Based on the above work a much detailed study is recommended considering more number of sub watersheds in different parts of the State, so that the model can be regionalized to use in ungauged areas for watershed management and planning processes.

XII. How do the conclusions/recommendations compare with current thinking?

Watershed based study is essential for any water resources management and planning projects. Similar studies are not done for any high land watersheds in Kerala. Hence this study will be useful for the water resources management projects of high land Kerala.

XIII. Field tests conducted

An infiltration study was conducted during the period April 2007 at Idinjamala where the soil texture is sandy clay loam. Double ring infiltrometer with diameters 30cms and 60cms and height 30cms were used for conducting the test. The cylinders were installed at 10cms deep into the soil. Water was then applied in both the inner and outer rings to maintain a constant depth of about 10cms. Water was replenished after the level falls by about 1cm. The water depths in the inner and the outer rings were kept same during the observation period. Readings of the volume of water added at successive time intervals to maintain a constant depth of flooding in the inner

ring were taken. As the purpose of outer ring is to suppress the lateral percolation of water from the inner ring, the water added to it need not be measured though the water was added to maintain the same depth as in the inner ring. The experiment was carried out till a constant infiltration rate was obtained. The rate of infiltration and time elapsed were noted down in standard formats. Figure 23 shows the curve of the rate of infiltration on elapsed time and cumulative infiltration on elapsed time for the watershed.

The infiltration study conducted at Idinjamala in Erattayar watershed shows an initial infiltration rate upto 60cm/hr, after three hours it reduces to 8cm/hr and becomes almost constant. The soil type is observed as sandy loam with a moisture content of 23.4%.

XIV. Software generated, if any. : Nil

XV. Possibilities of any patents/copyrights. If so, then action taken in this regard.: N.A.

XVI. Suggestions for future work.

More data collection is required for studying the hydrology of small watersheds. Also, we have to select more stations or else there arise unexpected situations where data collection can't be continued.

More length of period of data available can make more accurate the model prediction. Thus the values of the sensitivity parameters arrived at all the stations can be made the same if more years of data can be obtained and can be generalized.

Signature

(Head of the Department)

Name Prof. (Dr.) K. P. Sudheer

Date 24. 02. 2021

Signature

beline yearge

(Principal Investigator)

Name Dr Celine George

Date 22 - 02 . 2021

EXECUTIVE DIRECTOR

CWRDM

Kunnamangalam P.O.

Kozhikode - 673 571, Kerala

85

REFERENCES

Celine George, Nisha P. R. and Saleena S., 2011, Infiltration Modelling in Pooppara Soil of Idukki District in Kerala State", Hydrology Journal, Vol. 34, Issue 1 & 2, January – June 2011, 50 – 54.

Coffey, M. E., Workman, S. R., Taraba, J. L., and Fogle, A. W., 2004, Statistical procedures for evaluating daily and monthly hydrologic model predictions: Transaction of the American Society of Agricultural Engineering (ASAE), v. 47, no.1, p 59-68.

FAO Irrigation and Drainage Paper 24, "Crop Water Requirements", Food and Agriculture Organisation of the United Nations, Rome, 1984.

Gottschalk L. C., 1964, "Reservoir Sedimentation", V. T. Chow (ed.), Hand book of Applied Hydrology. McGraw Hill Book Company, New York, Section 7-1.

Hargreaves G. H. and Samani Z. A., 1985, "Reference Crop Evapotranspiration from Temperature", Applied Engineering in Agriculture, 1(2): 96-99, doi: 10.13031/2013.26773.

Horton R. E., 1945, Erosional development of streams and their drainage basins hydrophysical approach to quantitative morphology", Bull. Geol.Am.56: 275-370.

Linsley R. k., kohler M. A. and Paulhus JLH., 1988, "Hydrology for Engineers", McGraw-Hill, New York.

Moriasi D. N., J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, and T. L. Veith, 2007, "Model evaluation guidelines for systematic quantification of accuracy in watershed simulations", in Trans. ASABE, vol.50(3), pp.885-900.

Neitsch, S. L., Arnold, J. G., Kiniry, J. R., & Williams, J. R., 2005: Soil and water assessment tool. Theoretical documentation, Version 2005. Blackland Research Center, Texas Agricultural Experiment Station, Temple.

Parr J. R. and Bertrand A. R., 1960, "Water Infiltration into Soils", Advances in Agronomy, 12, 311-363. https://doi.org/10.1016/S0065-2113(08)60086-3.

Santhi, C., Arnold, J. G., Williams, J. R., Dugas, W. A., Srinivasan, R., and Hauck, L. M., 2001, Validation of the SWAT model on a larger river basin with point and nonpoint sources: Journal of American Water Resources Association, v. 37, no.5, p 1169-1188.

Schumm S. A., 1956, "The evolution of drainage systems and slopes in bad lands at Perth, Amboi, New Jersey. Geol. Soc. Ame. Bull. 67(s) pp: 597-646.

Strahler A N, 1952, "Dynamic basis of geomorphology". Geological Society of America Bulletin 63: 923-938.

Strahler N.,1964, "Quantative geomorphology of drainage basins and channel networks". In: VenTe Chow (ed.) Hand book of Applied Hydrology. McGraw Hill Book Company, New York.

Thornthwaite W. C., Hozman B., 1944, "Measurement of evaporation from land and water surface", Washington: U.S. Department of Agriculture, p. 4-11 (Technical Bulletin, 8117-B).

Wischmeier, W.H., and Smith D. D., 1958, "Rainfall energy and its relationship to soil loss", Transactions, American Geophysical Union 39: 10.1029/TR039i002p00285. Issn:002-8606.

Willmott C. J., 1981, "On the validation of models", Phys. Georgr. 2: 184-194.

ACKNOWLEDGEMENT

The investigators sincerely acknowledge the financial support extended by the Indian National Committee on Hydrology under the Ministry of Water Resources, Government of India. The Executive Director and the Head of Sub Centres, of CWRDM, has been kind enough to provide all the infrastructure facilities to carry out the project. Their timely guidance and motivation during every stage of the project are gratefully acknowledged. We also extend our sincere thanks to Registrar of CWRDM and all other staff for their whole-hearted co-operation and services.

APPENDIX -1

DATA COLLECTED

		CLIMATOL	OGICA	L DAT	A		
Name o	of station: Tha		ar: 2007		<u> </u>	Month	: January
	Rainfall	Evaporation in			Temper	ature in	°C
Date	in mm	mm	Max.	Min.	Dry	Wet	Ordinary
1	0.00	4.00					21.00
2	0.00	6.00	26.00	25.00			25.00
3	0.00	4.00	26.00	21.00			23.00
4	0.00	2.00	24.00	19.00	22.00	19.00	25.00
5	0.00	4.00	24.00	19.00	23.00	18.00	27.00
6	0.00	4.00	25.00	20.00	22.00	19.00	25.00
7	0.00	4.00	23.00	21.00	23.00	18.00	21.00
8	0.00	4.00	24.00	20.00			22.00
9	0.00	2.00	23.00	19.00			21.00
10	0.00	2.00	24.00	21.00	24.00	20.00	27.00
11	0.00	4.00	26.00	21.00	25.00	20.00	26.00
12	0.00	4.00	28.00	22.00	24.00	21.00	27.00
13	0.00	2.00	26.00	21.00	22.00	18.00	21.00
14	0.00	4.00	23.00	20.00			23.00
15	0.00	4.00	26.00	21.00	26.00	21.00	28.00
16	0.00	3.40			24.50	20.00	27.00
17	0.00	4.80			23.50	18.50	27.50
18	0.00	4.00			22.50	19.00	26.00
19	0.00	4.00	25.00	20.00	22.00	17.00	25.50
20	0.00	4.40	21.00	20.00	24.50	18.50	26.50
21	0.00	5.80			23.00	17.00	25.00
22	0.00	4.00	26.00	20.00	24.00	18.50	25.50
23	0.00	4.00	26.00	20.00	24.00	15.50	27.00
24	0.00	4.40	21.00	19.00	23.50	17.00	26.00
25	0.00	4.00	20.00	18.00	22.00	19.00	24.00
26	0.00	4.40	21.00	20.00	23.00	18.00	36.00
27	0.00	4.00	20.00	18.00	23.50	17.50	25.00
28	0.00	4.40	21.00	20.00	22.00	19	26.00
29	0.00	4.00	22.00	21	24.00	18	27.00
30	0.00	4.00	27.00	20	24	19.50	25.5
31	0.00	2.6	26.00	21.00	25	20.00	25.5
Total	0.00						
Mean		3.88	24	20.27	23.44	18.64	25.39

		CLIMATO	LOGIC	AL DA	TA			
Name of	station: Th		Year:2007 Month:February					
					Ten	nperatui	re in ⁰ C	
Date	Rainfall in mm	Evaporation in mm	Max.	Min.	Dry	Wet	Ordinary	
1	0.00	6.00	26.00	21.00	24.50	19.00	26.00	
2	0.00	4.10	27.00	20.00	23.00	17.00	26.50	
3	0.00	4.00	26.00	21.00	24.50	19.50	27.00	
4	0.00	4.40	25.00	20.00	23.00	19.00	26.00	
5	0.00	4.20	28.00	21.00	25.50	19.00	27.50	
6	0.00	3.40	28.00	22.00	25.00	20.50	28.50	
7	0.00	6.00	28.00	22.00	24.50	19.00	25.50	
8	0.00	5.60	27.00	21.00	24.00	20.50	27.50	
9	0.00	4.00	25.00	20.00	23.00	19.00	26.00	
10	0.00	3.60	26.00	21.00	24.00	18.00	28.00	
11	0.00	4.00	25.00	20.00	23.00	17.50	27.00	
12	0.00	4.40	29.00	21.00	25.00	17.00	28.00	
13	0.00	5.20	27.00	23.00	25.00	18.00	26.00	
14	0.00	4.20	29.00	22.00	25.50	19.00	25.50	
15	0.00	5.00	28.00	21.00	24.00	24.00	26.00	
16	0.00	5.20	25.00	22.00	25.00	21.50	26.00	
17	0.00	4.20	27.00	23.00	24.00	20.00	25.50	
18	1.20	3.20	28.00	22.00	23.50	18.50	26.00	
19	0.00	4.00	25.00	21.00	23.00	21.00	25.00	
20	0.00	6.00	26.00	21.00	24.00	20.00	27.00	
21	0.00	5.40	27.00	21.00	23.50	18.50	26.00	
22	0.00	6.00	26.00	20.00	23.00	18.00	25.00	
23	0.00	6.10	25.00	20.00	22.50	17.50	24.50	
24	0.00	5.60	29.00	23.00	23.00	19.00	25.00	
25	0.00	5.20	27.00	20.00	25.00	21.50	27.50	
26	0.00	4.10	25.00	21.00	24.50	18.50	26.00	
27	14.60	4.60	28.00	23.00	26.00	22.00	27.00	
28	0.00	4.00	28.00	22.00	26.50	19.50	28.00	
Total	15.80	131.70						
Mean		4.70	26.79	21.25	24.18	19.34	26.41	

		ICAL DATA : Thankamani		Voor	: 2007		Month: I	March		
Ivallie	oi Station	i. Illalikalilalii		1ear. 2007			WOILLI. I	Viaicii		
				T	empera	ture in '	°C	Wind	Anemo	Wind
_	Rainfall	Evaporation			_			directi	meter	Speed(
Date	in mm	in mm	Max.	Min.	Dry	Wet	Ordinary	on	Reding	km/hr)
1	0.00	5.20	28.00	23.00	25.50	21.50	21.00			
2	0.00	5.00	29.00	24.00	26.00	22.00	25.00			
3	0.00	6.00	28.00	23.50	27.50	20.50	23.00			
4	NA	NA	NA	NA	NA	NA	NA			
5	NA	NA	NA	NA	NA	NA	NA			
6	0.00	16.00	28.00	22.00	27.00	25.00	25.00			
7	0.00	4.80	29.00	23.00	25.50	19.00	21.00			
8	0.00	6.40	28.00	22.00	25.00	17.50	22.00			
9	0.00	6.00	27.00	23.00	26.00	19.50	21.00			
10	0.00	4.80	28.00	22.00	26.00	18.00	27.00			
11	0.00	6.00	28.00	23.00	25.00	19.00	26.00			
12	0.00	6.60	27.00	23.00	27.00	25.00	27.00			
13	0.00	5.00	28.00	22.00	25.00	20.00	21.00			
14	0.00	6.60	27.00	23.00	27.00	21.50	23.00			
15	0.00	6.80	29.00	24.00	26.00	22.00	28.00			
16	0.00	5.20	28.00	23.00	27.00	21.50	27.00			
17	0.00	4.80	27.00	22.00	25.00	21.00	27.50			
18	0.00	5.00	28.00	23.00	26.00	22.00	26.00			
19	0.00	5.20	29.00	24.00	27.00	21.00	25.50			
20	0.00	6.00	NA	NA	NA	NA	26.50			
21	0.00	5.60	29.00	25.00	28.50	21.50	25.00			
22	0.00	5.50	28.00	25.00	26.50	22.50	25.50			
23	0.00	5.20	28.00	24.00	26.50	21.50	27.00			
24	0.00	5.30	32.00	20.00	28.50	24.00	26.00	N-W	9754.2	
25	0.00	4.40	33.00	20.00	30.00	23.50	24.00	W	9757.2	0.13
26	0.00	4.80	33.00	20.00	28.50	23.00	36.00	N-W	9761.2	0.17
27	0.00	6.40	32.00	17.00	30.00	20.00	25.00	W	9775.9	0.61
28	0.00	6.80	33.00	24.00	30.00	29.50	26.00	Е	9834	2.42
29	0.00	6.00	32.00	21.00	28.50	21.00	27.00	S	9869.5	1.48
30	0.00	5.60	32.00	19.00	29.00	22.50	25.5	N-W	9895.9	1.04
31	0.00	5.2	32.00	16.00	28.5	21.50	25.5	W	990.1	0.28
Total	0.00	171.2								
Mean	0.00	5.9	29.29	22.16	27.07	28.66	28.66			0.86

Name	of station:	Thankamani	Υ	'ear: 200	07		Month: Apr	il		
	Rainfall	Evaporation			Tempera	iture in ⁰	°C	Wind	Anemo meter	Wind Speed
Date	in mm	in mm	Max.	Min.	Dry	Wet	Ordinary	direction	Reding	(km/hr)
1	0.00	4.40	32	20.00	28.50	22.50	29.00	W	9906	0.20
2	0.00	4.00	31.00	21.00	31.50	22.50	31.00	N	9918.9	0.54
3	1.10	5.30	33.00	20.00	27.50	23.50	29.50	N	9920.3	0.06
4	0.00	5.10	33.00	20.00	29.50	24.00	30.00	S	9925.2	0.20
5										
6										
7	0.00	17.00	32.00	17.00	29.00	28.00	29.50	NW	105.7	2.49
8	0.00	4.00	33.00	20.00	25.50	21.50	26.50	W	135.2	1.23
9	0.00	2.60	32.00	18.00	29.00	22.00	30.00	NW	148.3	0.55
10	0.20	4.60	31.00	19.00	28.50	22.50	29.50	W	177.8	1.23
11	35.20	4.00	29.00	20.00	28.50	25.00	28.50	NW	185.3	0.31
12	0.00	2.60	28.00	20.00	26.50	23.00	28.00	N	185.5	0.01
13	0.00	3.10	31.00	21.00	28.00	24.50	30.00	NW	186.4	0.04
14	0.00		30.00	20.00	28.50	23.00	29.50	W	200	0.57
15	54.10	4.10	31.00	17.00	24.50	22.50	26.00	S	240	1.67
16	1.20	3.20	27.00	18.00	27.00	22.00	28.50	Ν	245.6	0.23
17	0.00	2.00	29.00	19.00	28.50	24.00	28.50	W	255.7	0.42
18	0.00	5.20	30.00	18.00	29.50	24.00	30.50	NW	257.3	0.07
19	0.00	4.00	31.00	18.00	28.00	23.50	29.50	S	259.4	0.09
20										
21	70.80	0.80	32.00	17.00	28.00	22.50	28.50	NW	269.3	0.21
22	8.30	2.30	29.00	19.00	27.00	22.50	26.50	W	272.2	0.12
23	7.00	2.90	30.00	18.00	27.50	23.50	28.00	S	279.3	0.30
24	4.20	5.20	31.00	19.00	30.00	24.50	28.50	NW	297.4	0.75
25	0.00	4.00	32.00	21.00	28.50	24.00	29.50	N	298.9	0.06
26	0.00	4.00	33.00	20.00	29.00	24.00	29.50	NW	300.4	
27	0.00	4.00	31.00	19.00	28.50	25.00	29.50	N	302.3	
28	0.00	2.40	30.00	21.00	28.50	24.5	29.50	S	302.5	
29	0.00	3.00	31.00	20.00	228.00	24.00	29.00	SW	303.5	
30	6.20	4.20	32.00	19.00	30.00	24.50	29.50	NW	306.3	
31										
Total	188.30	108.00								
Mean		4.15	30.89	19.22	35.67	23.6	28.97			0.49

	Name of s	tation: Thankar	nani		Yea	r: 2007			Month:May		
	Rainfall	Evaporation			Temper	ature in	°C	Wind	Anemo meter	Wind Speed	
Date	in mm	in mm	Max.	Min.	Dry	Wet	Ordinary	direction	Reding	(km/hr)	
1	0.00	3.1	31	21	27.5	24.5	29	NW	306.4	-1.33	
2	0.00	4.6	31	21	29	24.5	30.5	NW	307.2	0.033	
3	1.2	3.2	30	22	26	23.5	26.5	NW	308.6	0.058	
4	0.00										
5	7.00	4	31	19	27.5	24.5	28.5	NW	310.2	12.93	
6	11.0	4	30	18	27	24	28	NW	310.9	0.029	
7	0.00	2.8	31	20	30.5	25	30.5	NW	312.2	0.054	
8	0.00	2.8	32	21	26.5	24	27.5	SW	312.3	0.004	
9	15.2	1.2	28	20	24.5	23.5	26.5	NW	312.3	0	
10	0.00										
11	8.6	2.6	29	19	26	23	27.5	N	313.5	13.06	
12	0.00	4	28	21	29.5	25	29.5	NE	314.2	0.029	
13	0.00	4	29	20	28	24.5	29	SW	315.1	0.038	
14	0.00	4	28	20	28.5	25	29.5	NW	316.2	0.046	
15	0.00	4	29	21	25.5	23	27.5	N	316.7	0.021	
16	0.00	4	28	19	28	24	28.5	N	317.4	0.029	
17	0.00	5	29	18	26	23	28	NW	318.7	0.054	
18	0.00	4	28	20	27	24	27	W	319.3	0.025	
19	0.00	4.2	30	17	30.5	22.5	29.5	N	320.4	0.05	
20	0.00	3.2	31	18	28.5	23	28.5	NW	312.1	-0.346	
21	0.00	4	30	17	27.5	22.5	28.5	W	322.3	0.023	
22	0.00	4.8	29	20	28	24	27	WN	323.4	0.046	
23	0.00	4	28	20	27	22.5	28	WN	324.3	0.038	
24	8.6	6	32	18	30	21.5	31.5	WN	330.4	0.254	
25	2.2	4	33	19	28.5	25	29	W	332.2	0.075	
26	0.00	2	29	18	29	23	30	W	333.1	0.038	
27	0.00	3	28	20	27	22	28	W	334.2	0.046	
28	44.2	4.4	31	19	24.5	22	24.5	W	334.6	0.017	
29	7.6	1.6	26	18	23.5	21.5	25.5	WN	335.5	0.037	
30	0	2	26	18	25.5	25	29.5	WN	338.4	0.121	
31	24.2	6.2	25	19	24	25.5	29	WN	339.2	0.033	
Total	129.80	106.7									
Mean		3.68	29.31	19.34	27.26	23.62	28.34			0.88	

		ICAL DATA								
Name	of station:	Thankamani		Yea	ar:2007	,	Me	onth:June		
	Rainfall	Evaporation		T	emper	ature ii	n ⁰ C	Wind	Anemo meter	Wind Speed
Date	in mm	in mm	Max.	Min.	Dry	Wet	Ordinary	direction	Reding	(km/hr)
1	0	2	26	18	25	25	29.5	WN	339.9	0.029
2	0	6	24	19	25.5	24	29	N	340.1	0.008
3	0	3	25	18	25	24.5	28.5	WN	341.2	0.046
4	0	4	24	20	25	24	28.5	SN	342.3	0.046
5	0	3	26	18	25	24	29	SN	348.7	0.267
6	2.6	3.2	30	17	27	23.5	27.5	N	344.5	-0.18
7	1.6	3.6	28	19	28	24.5	29.5	WN	344.7	0.008
8	0	2	29	20	28.5	25	29	WN	345	0.013
9	0	0	28	20	28	25	29	WN	346.2	0.05
10	0	0	29	19	25	23.5	27	N	347	0.033
11	0	4	29	20	28	24	29	WN	347.7	0.029
12	13.6	1.6	24	19	23	21.5	24.5	WN	347.8	0.004
13	25.8	1	25	20	25	22.5	26.5	WN	347.9	0.004
14	9.4	0.4	21	18	21.5	19.5	22.5	SN	348.6	0.029
15	7.4	1.4	27	19	25	22.5	26	WN	349.1	0.021
16	7.6	3.6	21	20	25	22.5	22.5	WN	350.2	0.046
17	5.4	0.4	25	19	28	24	24	SN	353.4	0.133
18	12.6	0.6	29	20	25	23	29	WN	356.7	0.143
19	9	0	21	18	25	23.5	26	W	357.5	0.033
20	7	2.2	21	20	28	24	26	W	357.8	0.013
21	9	0	27	20	23	25	22.5	WN	358.7	0.037
22	133.2	53.2	22	19	20	19.5	21.5	W	425.2	2.771
23	12.6	0.6	29	20	25	23	29	WN	426.3	0.046
24	9.4	3.4	21	20	25	24	27.5	W	428.4	0.087
25	9.4	3.4	22	18	23.5	21.5	24.5	WN	534.1	4.404
26	0	0.8	25	19	25	22	26.5	NE	537.1	0.125
27	3.2	1.2	26	18	23.5	21.5	24.5	W	542	0.204
28	9.4	1.4	25	19	25	22	26.5	WN	620.2	3.258
29	9.2	0	22	18	23	21.5	24.5	W	628.4	0.342
30	9.4	1.4	21	19	25	22	24.5	WN	636.5	0.338
31										
Total	306.8	107.4								
Mean		3.58	25.1	19.0	24.9	23.3	26.5			0.4

Name	of station:	Thankamani	_	Year	2007		Мог	nth:July		
					Temper	ature in	°C		Anemo	Wind
	Rainfall	Evaporation						Wind	meter	Speed
Date	in mm	in mm	Max.	Min.	Dry	Wet	Ordinary	direction	Reding	(km/hr)
1	9	1	21	18	25	23.5	26	WN	750.2	4.74
2	6	0	29	20	24	25	29	WN	757.5	0.304
3	9	0.6	20	20	25	23.5	27	WN	760.5	0.125
4	4	0.4	25	19	25	22.5	23.5	WN	787.7	1.133
5	6.4	0.4	25	20	25	23.5	23	WN	855.4	2.821
6	7	1	21	19	25	21	21	WN	831.5	-0.996
7	6.8	0	20	18	25	23	26	WN	832.4	0.037
8	7.4	0	20	19	25	22.5	23	WN	832.8	0.017
9	6	0	27	20	25	23.5	21	WN	852.4	0.817
10	7	0.1	25	20	23.5	22	21	WN	858.3	0.246
11	6	0	20	19	25	23.5	23	W	860.4	0.088
12	5	0	24	19	22	23	25.5	WN	865.4	0.208
13	45.6	NA	NA	NA	NA	NA	NA	NA	NA	NA
14	31.2	NA	NA	NA	NA	NA	NA	NA	NA	NA
15	31.2	NA	NA	NA	NA	NA	NA	NA	NA	NA
16	45.4	NA	NA	NA	NA	NA	NA	NA	NA	NA
17	154.4	NA	NA	NA	NA	NA	NA	NA	NA	NA
18	34.4	NA	NA	NA	NA	NA	NA	NA	NA	NA
19	13	NA	NA	NA	NA	NA	NA	NA	NA	NA
20	4.8	NA	NA	NA	NA	NA	NA	NA	NA	NA
21	32.4	NA	NA	NA	NA	NA	NA	NA	NA	NA
22	10.4	NA	NA	NA	NA	NA	NA	NA	NA	NA
23	6.6	NA	NA	NA	NA	NA	NA	NA	NA	NA
24	8.2	NA	NA	NA	NA	NA	NA	NA	NA	NA
25	25.2	NA	NA	NA	NA	NA	NA	NA	NA	NA
26	9.2	3	24	18	22	20.5	23.5	WN	NA	NA
27	20.6	0.6	22	19	21.5	20.5	22.5	W	NA	NA
28	9	0	22	18	22.5	20.5	23.5	WW	NA	NA
29	8	0	23	19	21.5	20.5	22.5	WW	NA	NA
30	9.2	3.2	22	18	22	20.5	24.5	WW	NA	NA
31	3.6	0	25	19	22	21.5	23.5	WN	NA	NA
Total	582	10.3								
Mean		1.14	23.06	19	23.67	22.25	23.83			0.79

			CLI	MATC	LOG	ICAL	DATA			
Name	of station:	Thankamani		Υ	/ear:20	07		Month:	August	
	Rainfall	Evaporation			emper			Wind	Anemo meter	Wind Speed
Date	in mm	in mm	Max.	Min.	Dry	Wet	Ordinary	direction	Reding	(km/hr)
1	18.80	0.80	24.0	18.0	21.5	20.5	23.5	WN	921.1	-3.71
2	9.90	0.40	22.0	19.0	22.0	20.5	23.5	WN	927.6	0.271
3	9.60	1.60	23.0	18.0	24.5	21.5	25.5	NE OW	932.3	0.196
4	5.00	0.00	25.0	19.0	25.5	22.5	27.0	SW	935	0.113
5	6.00	0.40	23.0	18.0	24.0	21.0	25.0	WN	938.1	0.129
6	9.40	1.40	27.0	18.0	22.5	21.5	23.5	S	957.8	0.821
7	17.20	0.80	26.0	19.0	23.0	21.5	24.5	W	968.3	0.438
8	6.00	1.00	27.0	18.0	22.0	21.5	23.5	W	990.4	0.921
9	9.00	1.00	26.0	19.0	23.0	22.5	24.5	WN	999.5	0.379
10	45.20	0.00	21.0	18.0	21.0	20.5	21.5	W	1006.9	0.308
11	6.00	1.00	21.0	18.0	23.0	20.5	24.5	W	1010.2	0.138
12	5.00	0.00	26.0	19.0	22.0	22.0	23.5	WN	1011.8	0.067
13	9.20	0.40	21.0	19.0	22.5	21.0	25.0	W	1012	0.008
14	5.00	0.00	21.0	18.0	21.0	20.8	21.5	WN	1014.6	0.108
15	0.00	2.00	23.0	19.0	25.5	21.5	25.5	W	1016.7	0.088
16	0.00	3.00	26.0	20.0	22.0	21.0	24.0	WN	1018.3	0.067
17	0.00	4.00	23.0	19.0	23.0	22.0	23.5	W	1020.4	0.088
18	0.00	2.00	22.0	20.0	24.0	21.5	21.5	WN	1021.5	0.046
19	0.00	6.00	22.0	19.0	22.0	21.0	23.5	W	1024	0.104
20	0.00	2.00	26.0	20.0	25.0	22.0	23.0	W	1028.7	0.196
21	0.00	3.00	23.0	18.0	22.0	21.5	23.5	W	1029.8	0.046
22	0.80	2.00	23.0	17.0	26.0	23.0	26.5	WN	1024.1	-0.238
23	0.00	3.00	23.0	18.0	22.0	21.0	23.5	WN	1028.2	0.171
24	0.00	2.00	22.0	17.0	23.0	22.0	23.0	W	1030.7	0.104
25	0.00	6.00	22.0	20.0	22.0	21.0	23.5	WW	1081.2	2.104
26	0.00	2.00	22.0	20.0	23.0	21.5	21.0	W	1033.5	-1.988
27	0.00	4.00	23.0	20.0	23.0	21.5	23.5	WW	1034.6	0.046
28	0.00	2.00	20.0	20.0	22.0	21.0	24.5	W	1038.5	0.163
29	0.00	4.00	20.0	18.0	23.0	21.0	23.0	WN	1039.5	0.042
30	0.00	2.00	22.0	20.0	23.0	21.0	23.0	WN	1040.5	0.042
31										
Total	162.10	57.80								
Mean		1.93	23.2	18.8	22.9	21.4	23.8			0.04

CLIMA	ATOLOG	ICAL DATA								
Name o	of station:	Thankamani		Ye	ar: 200	7	Month	: Septembe	r	
				т	emper	ature i	n ⁰C		Anemo	Wind
Doto	Rainfall	Evaporation	Max.	Min.	Dry	Wet	Ordinary	Wind direction	meter	Speed
Date 1	in mm 0.00	in mm 2.00	23.0	19.0	25.5	21.5	25.5	WN	Reding 1019.5	(km/hr) -1.083
2	0.00	4.00	21.0	18.0	23.0	22.0	23.5	W	1019.3	0.037
3	0.00	6.00	22.0	19.0	22.0	21.0	23.5	WN	1020.4	0.054
4	0.00	2.00	21.0	18.0	23.0	20.0	23.5	W	1023.1	0.058
5	6.20	2.20	27.0	20.0	22.0	21.0	23.0	N	1025.6	0.104
6	6.40	1.00	22.0	20.0	22.0	20.0	23.0	N	1025.7	0.004
7	1.40	0.00	22.0	20.0	22.0	20.0	23.5	WN	1025.8	0.004
8	2.40	0.50	21.0	18.0	23.0	21.0	22.0	WN	1025.9	0.004
9	4.00	0.00	23.0	20.0	22.0	20.0	23.0	N	1026.7	0.033
10	15.3	0.00	20.0	20.0		20.0	20.0		1020.1	0.000
11	50.60	4.60	28.0	21.0	26.0	23.0	27.5	N	1026.8	0.004
12	2.40	0.40	27.0	21.0	20.0	23.5	27.5	W	1027	42.79
13	7.60	1.60	22.0	19.0	22.5	21.5	23.5		1027.2	0.017
14	7.00	1.60	22.0	19.0	22.0		23.5	W	1027.4	0.017
15	2.40	0.40	27.0	21.0	26.0	21.5	27.5	WN	1027.5	0.012
16	4.00	0.00	23.0	19.0	22.0	23.5	25.5	W	1027.7	0.012
17	1.20	0.00	22.0	18.0	23.0	20.0	23.5	WN	1028.2	0.029
18	2.00	0.00	21.0	20.0	25.5	21.0	22.5	WN	1028.2	0.021
19	1.20	0.00	21.0	20.0	25.5	21.0	NA	WN	1029.2	0.042
20	4.00	0.00	22.0	18.0	23.0	20.0	22.5	W	1030.4	0.092
21	2.40	0.40	23.0	19.0	25.5	23.5	25.5	WN	1035.1	0.246
22	1.20	0.00	21.0	20.0	22.0	21.0	23.5	W	1032.1	0.071
23	2.40	0.40	22.0	19.0	26.0	22.0	23.0	WN	1038.3	0.133
24	7.60	1.60	21.0	18.0	22.5	21.0	22.0	S	1041.5	0.392
25	9.80	2.80	22.0	19.0	22.5	21.0	22.0	WN	1042.5	0.175
26	26.20	1.40	28.0	17.0	29.0	24.0	29.5	WN	1043.3	0.075
27	20.0									
28	21.60	1.60	29.0	18.0	23.0	21.5	25.0	WN	1043	-0.012
29	0.0									
30	0.0									
31										
Total	209.30	34.50								
Mean		1.33	23.2	19.2	23.5	21.4	24.2			1.667

Name	of station:	Thankamani		Υ	ear: 20	07	Mont	n: October		
	Date C. P.	F		Т	emper	ature i	n ⁰C	VAC: -1	Anemo	Wind
Date	Rainfall in mm	Evaporation in mm	Max.	Min.	Dry	Wet	Ordinary	Wind direction	meter Reding	Speed (km/hr)
	6.00	1.00	26.0	19.0	26.0	23.0	27.0	W-N	1043.6	0.025
1 2	5.20	0.80	27.0	17.0	23.5	21.0	25.0	N	1043.7	0.025
3	0.00	4.20	22.0	16.0	24.5	22.0	26.5	N N	1043.7	0.004
4	0.00	4.20	22.0	10.0	24.5	22.0	20.5	IN	1043.7	U
5	0.00	4.80	27.0	17.0	26.5	22.0	28.0	W-N	1044	0.012
6	0.00	2.20	21.0	17.0	25.5	21.0	25.0	W-N	1044	-0.029
7	0.00	4.00	22.0	16.0	25.5	22.0	25.0	W-N	1045.1	0.075
8	0.00	4.60	21.0	17.0	24.5	21.0	26.0	N-E	1045.6	0.073
9	0.00	2.00	22.0	17.0	24.0	20.0	26.0	W-N	1045.7	0.004
10	0.00	2.60	27.0	18.0	25.0	20.5	26.5	W-N	1046.9	0.05
11	0.00	5.00	31.0	31.0	26.5	24.0	28.0	W-E	1052	0.212
12	4.20	2.20	31.0	31.0	28.5	24.5	27.5	N N	1052	0.212
13	13.00	5.00	32.0	32.0	23.5	22.5	27.0	W	1053	0.042
14	6.60	1.40	31.0	31.0	26.5	23.5	29.5	N	1053	0.012
15	3.60	2.15	31.0	31.0	25.5	22.5	30.0	N	1053	0
16	0.00	2.00	31.0	31.0	24.5	22.0	26.5	W	1054	0.042
17	3.80	1.80	31.0	31.0	23.0	21.5	25.0	W	1056	0.083
18	4.80	0.80	31.0	31.0	21.0	20.5	22.5	W	1060	0.167
19	2.60	10.60	32.0	32.0	23.0	21.5	25.0	N	1062	0.083
20	44.00	0.00	32.0	32.0	22.0	21.0	24.0	W	1062	0
21	4.40	2.80	34.0	34.0	27.5	23.0	28.0	W	1062	0
22	14.20	0.00	33.0	33.0	21.5	20.5	23.5	N	1063	0.042
23	21.20	5.80	32.0	32.0	21.5	20.0	23.0	N-W	1067	0.167
24	1.00	9.00	34.0	34.0	24.0	21.5	26.0	W	1129	2.583
25	118.20	Overflow	34.0	34.0	79.5	19.0	21.5	N-W	1148	0.792
26	0.00	7.00	34.0	34.0	21.5	20.5	25.0	N-W	1206	2.417
27	4.60	6.40	33.0	33.0	24.0	21.5	25.5	N	1216	0.417
28	18.20	0.00	33.0	33.0	23.0	21.5	24.5	W	1219	0.125
29	19.40	3.00	34.0	34.0	21.5	21.0	24.0	W	1219	0
30	28.60	0.00	34.0	34.0	23.5	22.0	25.0	W	1219	0
31	2.20	0.00	34.0	34.0	25.5	22.5	27.0	W	1219	0
Total	225.00	01.15								
Total	325.80	91.15								
Mean		3.14	29.9	27.9	26.1	21.6	25.8			0.244

CLIM	ATOLOG	SICAL DATA								
Name	of station:	Thankamani		Year:	2007		N	Ionth: Nove	ember	
	Rainfal	Evaporation		Т	emper	ature i	n ⁰C	Wind	Anemo meter	Wind Speed
Date	in mm	in mm	Max.	Min.	Dry	Wet	Ordinary	direction	Reding	(km/hr)
1	0.00	2.60	32.0	23.0	28.5	25.0	33.5	N	1219	Ó
2	0.00	2.30	23.0	32.0	26.5	23.0	28.0	W	1219	0
3	49.20	1.20	32.0	23.0	24.0	21.5	25.5	N-W	1221	0.083
4	0.80	3.45	32.0	23.0	22.0	21.0	24.0	N	1222	0.042
5	0.00	6.00	32.0	23.0	24.0	21.5	25.5	N	1223	0.042
6	0.20	10.20	31.0	23.0	22.5	21.5	24.0	S	1223	0
7	6.20	4.20	31.0	23.0	25.5	23.5	27.0	N	1223.9	0.038
8	0.00	4.40	31.5	23.0	28.0	25.0	29.0	Е	1223.9	0
9	19.00	1.00	31.0	23.0	26.0	22.5	27.5	Е	1224	0.004
10	0.00	4.80	31.0	23.0	24.0	25.0	25.0	W	1224	0
11	15.00	0.00	31.0	23.0	23.0	26.0	26.0	W	1224.1	0.004
12	1.20	10.00	31.0	23.0	24.0	25.5	25.5	N-W-E	1224.4	0.013
13	0.20	3.40	31.0	23.0	24.5	26.0	26.0	N	1226.3	0.079
14	0.00	2.20	31.0	23.0	24.5	21.0	25.5	W	1226.3	0
15	0.00	4.70	23.0	23.0	24.5	20.0	29.0	W-N	1226.5	0.008
16	0.00	6.30	31.0	29.0	26.5	20.0	25.0	E	1229.4	0.121
17	1.00	11.00	31.0	29.0	20.0	16.0	23.0	W	1229.4	0
18	0.60	4.80	31.5	29.0	24.5	21.0	35.0	N-W	1232.2	0.117
19	0.00	0.00	31.0	29.0	24.5	21.5	25.5	N-W	1240.5	0.346
20	0.00	4.70	31.0	29.0	27.5	23.0	28.0	W	1252.3	0.492
21	0.20	11.20	31.5	29.5	25.0	22.0	26.0	N-W	1224.6	-1.154
22	0.20	1.30	31.0	29.0	25.0	25.0	27.0	N-W	1302.4	3.242
23	0.00	10.00	31.5	29.0	21.0	19.5	22.5	N-W	1309.5	0.296
24	15.00	5.00	31.0	29.0	23.5	21.5	25.0	W	1311.2	0.071
25	9.00	3.40	31.0	29.0	26.5	21.5	27.5	W	1316.1	0.204
26	0.00	16.00	31.0	29.0	22.0	16.0	23.5	W-N	1318.7	0.108
27	0.00	6.40	31.0	29.0	22.5	20.5	24.5	W-N	1328.9	0.425
28	0.20	12.20	31.5	29.0	25.5	22.0	27.0	W	1331.2	0.096
29	0.60	5.20	31.0	29.0	25.5	22.0	27.0	W	1343.1	0.496
30	0.00	4.20	31.0	29.0	23.0	19.5	24.5	W-W	1360.6	0.729
31										
Total	118.60	162.15								
Mea n		5.41	30.7	26.3	24.5	22.0	26.4			0.197

CLIMA	TOLOGI	CAL DATA								
Na	me of stati	on: Thankaman	i		Year	r:2007		Mon	th: Decem	ber
Date	Rainfall in mm	Evaporation in mm	Max.	Min.	Temper	ature in Wet	⁰ C Ordinary	Wind direction	Anemo meter Reding	Wind Speed (km/hr)
1	0	4.00	31.5	29	23.5	19.5	25	NW	1380.1	0.813
2	0	4.60	31.5	29	23	20.5	24.5	ES	1411.7	1.317
3	0	4.80	31.5	29	23.5	21	25	NW	1444.6	1.371
4	0	4.85	24	23	25.5	23	25	NW	1505.2	2.525
5	0	4.55	24	23	25.5	24	28	W	1520.5	0.637
6	0	4.80	33	28	27.5	25.5	28	WS	1646.3	5.242
7	0.6	7.60	34	28	22	19.5	23	NW	1690.1	1.825
8	0	4.60	33	28	20	19.5	23.5	SW	1720	1.246
9	0	4.60	33	28	25	21.5	27.5	W	1748.1	1.171
10	0	6.80	34	28	26.5	25.5	27.5	NW	1763.7	0.65
11	0	6.60	34	28	21.5	17	22.5	SW	1768.1	0.183
12	0	8.00	33	28	28	22.5	28	WN	1771.3	0.133
13	0	4.60	34	28	26	22	25	SW	1772.2	0.038
14	9.8	5.00	33	28	23.5	21	25	NW	1773.8	0.067
15	0	1.00	34	28	18.5	18.5	22	WN	1788.8	0.625
16	0	4.00	34	28	26.5	21.5	26.5	SW	1818.2	1.225
17	0	4.00	33	28	26.5	22	27	WS	1828.7	0.438
18	0.2	4.00	34	28	20	20	23.5	NW	1836	0.304
19	45.2	11.80	34	28	20.5	20	22	Ν	1837.3	0.054
20	9.4	8.60	34	27	19.5	19	21	NW	1840.4	0.129
21	2.6	0.08	34	28	23	21	24	NW	1886.5	1.921
22	0.6	5.20	34	28	22.5	20.5	24.5	W	1901.8	0.637
23	0.2	4.80	34	28	23.5	19.5	20.5	NW	1902.6	0.033
24	0.2	4.80	34	28	16.5	16	18	NW	1903.5	0.038
25	0	4.80	27	19	22	19	19	WN	1912	0.354
26	0.8	4.20	33	29	15	13.5	17	W	1914.5	0.104
27	0	4.00	25	25	26	24	30	SW	1914.5	0
28	1	5.60	28	11	26.5	22.5	24	W	1919.5	0.208
29										
30										
31										
Total	70.6	142.28								
Mean		9.81	31.98	26.71	23.13	20.68	24.16			0.832

Daily Rainfall (mm) at Pathammile for the Year 2007

			J		(,	010 1 010	IIaIIIIIII				1	
Date	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1	0	0	0	0	0	0	53	19.4	11.1	7.3	0	0
2	0	0	0	0	0	0	73	9.2	9	9.1	0	0
3	0	0	0	0	5.4	1	63	13	16.3	0	34.4	0
4	0	0	0	0	0	0	57	5	1.3	0	1	0
5	0	0	0	0	5.2	0	11.2	20.2	2.4	0.4	0.2	0
6	0	0	0	0	9.6	0	44	24.6	39.1	0	0	0
7	0	0	0	0	0	3	53	26.2	10.3	0	5.2	0.4
8	0	0	0	0	0	0	26	27.4	11.2	0	0	0
9	0	0	0	0	13.6	0.6	25.8	32	10.1	0	11.4	0
10	0	0	0	0	10.2	1.2	75.2	71.8	28.4	0.3	0	0
11	0	0	0	31.4	0	0.6	32.2	27.2	22	0	10.2	0
12	0	0	0	0	0	6.2	42.8	18.2	26.2	0.4	1	0
13	0	0	0	0	0	32.8	45.6	1.4	5	11.2	0.5	0
14	0	0	0	0	0	13.2	31.2	0.4	2.1	4.3	0	6.4
15	0	0	0	61.6	0	8.4	31.2	0	32.4	2.1	0	0
16	0	0	0	0	0	24	45.4	0.4	32.3	3.6	0	0
17	0	0	0	0	0	18.2	154.4	0	31	4.1	0	0
18	0	0	0	0	0	20.2	34.4	0	23.4	14	0	1
19	0	0	0	0	0	40.2	13	0	99.3	3.2	0	38.1
20	0	0	0	0	0	0	4.8	0	36.3	58.2	0	13.2
21	0	0	0	0	0	47	32.4	7.4	31.1	8.1	0	3.1
22	0	0	0	0	0	167	10.4	20.4	24.2	12	0	2.3
23	0	0	0	0	0	22	6.6	3.4	39.3	19.3	0	0
24	0	0	0	5.4	0	19.2	8.2	27	25.4	1.2	11.4	0
25	0	0	0	0	0	9.6	25.2	51	25	99.1	1.3	0
26	0	0	0	0	0	1.2	8.2	8	16.1	0	0	0.5
27	0	0	0	0	0	3	22.2	11.2	0.3	5.1	0	0
28	0	0	0	0	48	5.6	21.4	9.8	26.4	25.2	0.2	0
29	0		0	0	7	37.2	8	12.1	2	20.1	0.4	0
30	0		0	0	7.6	34.8	6.8	15.3	2.1	32.1	0	0
31	0		0		9.4		9.2	12.4		0		0
Total	0	0	0	98.4	116	516.2	1074.8	474.4	641.1	340.4	77.2	65

			CLII	MATC	LOG	ICAL	DATA			
Name	of station:	Thankamani		١	Year 20	80		Мс	nth: Janu	iary
Dete	Rainfall	Evaporation	Mey	Min		mpera Wet	ture in ⁰ C	Wind	Anemo meter	Wind Speed
Date	in mm	in mm	Max.	Min.	Dry			direction	Reding	(km/hr)
1 2	0.00	4.60	20.0	47.0	26.0	22.0	27.0	N-W	1977.4	4.40
3	0.00	5.00	29.0	17.0	27.0	24.0	28.0	W N-W	2011.7	1.43
	0.00	4.20	26.0	15.0	25.0		26.5		2085.4	3.07
<u>4</u> 5	0.60	4.00	28.0	17.0	27.0	24.0 26.0	27.0 29.0	N N	2169.8 2201.2	3.52
	0.00	5.40	27.0	17.0	28.0			N		1.31
6 7	0.00	4.00	24.0	13.0	24.0	20.0	26.0	N W	2246.6	1.89
		4.60	28.0	16.0	27.5	24.0	28.0		2289.5	1.79
9	0.00	4.60	23.0	11.0	24.0	21.0	25.0	W NI W	2331.7	1.76
	0.00	4.60	25.0	14.0	25.0	24.0	26.0	N-W	2352.1	0.85
10	0.00	4.80	29.0	15.0	26.0	22.5	28.0	W	2391.4	1.64
11	0.00	5.00	28.0	16.0	26.5	25.0	27.5	N-W	2410.3	0.79
12	0.00	4.00	22.0	12.0	22.0	19.0	24.0	N-W	2444.7	1.43
13	0.00	4.00	24.0	13.0	23.0	20.0	25.0	N-W	2463.8	0.80
14 15	0.00	4.60	26.0	15.0	26.0	22.0	26.0	N-W	2500.1	1.51
	0.00	4.80	29.0	16.0	27.0		28.0	N-W	2521.2	0.88
16 17	0.00	4.40	27.0	17.0	27.0	25.0	27.0	W N-W	2546.1	1.04
18	0.00	4.60 4.80	28.5 29.0	16.0 17.0	28.0	26.0 26.5	28.5 29.0	N-VV	2587.6 2602	1.73 0.60
19	0.00		26.5	15.0		23.0	27.0		2623.5	
20	0.00	4.60 4.60	27.0	17.5	28.0	24.0	27.5	N N	2658.4	0.90 1.45
21	0.00	4.00	25.0	14.0	24.0	21.0	26.0	N N	2671.3	0.54
22	0.00	4.60	27.0	16.0	26.5	22.0	27.0	N N	2711.1	1.66
23	0.00	5.00	30.0	17.0	29.0	26.0	29.0	W	2735.9	1.03
24	0.00	4.60	29.0	16.0	26.5	25.0	28.5	N-W	2735.9	-0.40
25	0.00	4.60	29.0	15.0	25.5	24.0	27.0	N-W	2800	3.07
26	0.00	4.60	29.0	18.0	27.5	25.0	29.0	N	2819.8	0.83
27	0.00	4.00	28.0	16.0	25.0	22.0	27.0	W	2843.2	0.83
28	0.00	4.60	29.0	15.0	24.5	23.5	28.0	W	2865.7	0.94
29	0.00	4.40	29.0	17.0	24.5	22.0	26.0	W	2865.8	0.94
30	13.60	9.60	28.0	18.0	29.5	25.0	29.0	W	2865.9	0.00
31	0.00	4.00	28.0	19.0	27.0	21.5	28.5	S	2865.8	0.00
Total	14.2	145.20	20.0	13.0	21.0	21.0	20.3	3	2000.0	0.00
Mean	17.4	9.08	27.2	15.7	26.2	23.2	27.3			1.23

			CL	IMATO	OLOG	ICAL	DATA			
Name	of station:	Thankamani				2008	-	Mon	th: Februa	ry
					°C	Temp	erature in		Anemo	Wind
D . (.	Rainfall	Evaporation				101.4	0	Wind	meter	Speed
Date	in mm	in mm	Max.	Min.	Dry	Wet	Ordinary	direction	Reding	(km/hr)
1	0.00	4.60	29.0	18.0	27.5	25.0	29.0	N N	2865.9	0.004
2	0.20	4.40	28.0	18.0	24.5	22.0	28.0	N S	2865.9	0.000
3	0.00	4.50	30.0	16.0	25.0	20.0	27.0		2866	0.004
4	0.60	4.60	28.0	24.5	16.5	16.5	25.5	N-W	2867.1	0.046
5	0.00	4.40	26.0	17.0	26.0	18.0	28.0	N-W	2874.3	0.300
6 7	0.00	4.80	27.0	16.0 17.0	29.0 26.0	20.5	29.5 27.5	N N	2889.5	0.633
	0.00 1.90	4.60 4.30	29.0 26.0	15.0	27.0	23.0	27.5	N-W	2895.9 2901.9	0.267 0.250
9	9.40	5.40	29.0	18.0	20.0	19.0	22.0	N	2901.9	0.250
<u> </u>	36.20	0.00	28.0	19.0	26.5	23.0	28.0	N N	2911.1	0.000
11	0.80	4.00	27.0	17.0	27.0	21.0	28.5	E-N	2911.1	0.000
12	2.00	3.20	29.0	19.0	26.5	20.5	28.0	W	2912.1	0.042
13	0.00	4.00	28.0	18.0	25.5	21.0	27.0	N	2936.9	0.513
14	0.00	4.60	23.0	17.0	23.0	20.0	25.0	N-W	2946.9	0.417
15	0.00	4.60	28.0	17.0	18.5	17.0	20.5	N-W	2973.9	1.125
16	0.00	4.00	27.0	18.0	23.5	20.0	25.0	W	3027.5	2.233
17	0.00	4.60	28.0	18.0	25.5	20.5	27.0	W	3062.7	1.467
18	0.00	4.60	28.0	17.0	28.0	18.5	29.0	W	3091.6	1.204
19	0.00	4.60	22.0	20.0	24.0	19.0	29.0	W	3100.1	0.354
20	0.00	4.00	31.0	12.0	25.5	19.5	30.0	W	3104.2	0.171
21	0.00	4.60	30.0	13.0	24.5	19.0	26.0	W	3110.8	0.275
22	0.00	4.00	29.0	15.0	29.5	20.5	30.0	N	3125.2	0.600
23	2.60	4.00	30.0	15.0	29.0	20.5	29.5	N-W	3132.2	0.292
24	0.00	4.00	29.0	12.0	15.0	14.0	16.5	W	3134.5	0.096
25	0.00	4.60	28.0	12.0	25.0	21.0	30.0	W	3144.6	0.421
26	0.00	4.00	30.0	13.0	30.5	18.5	31.0	W	3154.8	0.425
27	0.00	4.60	30.0	13.0	22.0	21.5	28.5	N	3166.60	0.492
28	2.00	4.20	29.0	14.0	15.0	15.0	19.0	N	3187.30	0.863
29	0.00	4.60	28.0	16.0	29.5	19.5	30.0	N-W	3243.20	2.329
Total	55.70	120.00								
Mean			28.1	16.4	24.7	19.8	26.9			0.542

			CLI	ΙΜΔΤΟ	טו טפו	ICAL	DATA			
Name	of station:	Thankamani	CL		ear 200		DAIA	Month: Ma	ırch	
					°C		erature in		Anemo	Wind
Dete	Rainfall	Evaporation		Miles	D	10/-4	0	Wind	meter	Speed
Date	in mm	in mm	Max.	Min.	Dry	Wet	Ordinary	direction	Reding	(km/hr)
1	0.20	4.80	29.0	18.0	24.5	20.0	26.0	N N	3264.1	0.87
2	3.20	7.20	28.0	19.0	21.5	20.0	23.0	N-W	3291.3	1.133
3	0.00	4.00	27.0	25.0	25.0	19.5	32.0	W	3311.2	0.829
4	0.00	4.60	30.0	19.0	28.0	23.0	29.0	N	3318.7	0.313
5 6	0.20	4.20	30.0	19.0	25.0	20.0	24.5	W W	3320.9	0.092
7	0.20	4.20	29.0	12.0	22.0		20.0		3334.9	0.583
8	0.00	4.60	29.0 29.0	18.0	27.0	17.0 18.0	29.0 26.0	N-W W	3340.6	0.237 3.017
9	0.00	4.60 4.60	29.0	14.0 16.0	24.0 16.0	14.5	20.0	N-W	3413 3477.2	2.675
10	0.00	4.00	28.0	18.0	20.0	15.5	22.0	N-VV	3518.6	1.725
11	0.00	4.80	29.0	16.0	20.5	15.0	22.5	N-W	3525.9	0.304
12	0.00	4.60	29.0	17.0	29.5	17.5	30.0	N-W	3584.7	2.450
13	1.80	6.40	29.0	17.0	29.0	22.5	30.5	W	3604.7	0.813
14	8.00	A	25.0	25.0	24.0	22.5	30.0	N-W	3604.5	0.013
15	30.60	A	24.0	23.0	24.0	24.0	30.0	W	3610	0.229
16	4.80	A	23.0	19.0	23.5	23.0	25.0	W	3617.1	0.296
17	16.20	4.20	20.0	18.0	22.0	21.0	22.0	W	3652.1	1.458
18	3.60	A	23.0	20.0	21.0	20.0	22.0	N-W	3671.3	0.800
19	3.40	А	20.0	19.0	21.5	20.0	25.0	N	3696	1.029
20	15.20	А	24.0	19.0	24.5	21.5	26.0	W-S	3702	0.250
21	25.60	А	23.0	17.0	22.0	20.0	23.0	N	3734.7	1.362
22	3.20	Α	20.0	18.0	24.0	22.5	20.0	N	3761.8	1.129
23	3.00	Α	25.0	20.0	29.0	23.0	25.0	N-W	3761.9	0.004
24	8.40	Α	29.0	18.0	27.5	24.0	29.0	N	3762.3	0.017
25	0.00	Α	29.0	17.0	29.5	22.5	29.0	V	3762.8	0.021
26	0.00	6.20	30.0	15.0	28.5	24.5	30.5	N	3762.9	0.004
27	0.00	6.00	30.0	18.0	29.0	27.0	30.2	V	3763	0.004
28	0.00	4.80	25.0	20.0	21.0	20.5	22.5	W	3763.2	0.008
29	16.90	1.10	27.0	25.0	25.0	24.0	29.0	W	3763.8	0.025
30	10.60	0.60	29.0	19.0	30.0	24.0	30.5	N-W	3764.2	0.017
31	23.00	3.00	30.0	18.0	20.0	19.5	22.0	N-W	3764.4	0.008
Total	178.30	88.70								
Mean		4.44	26.8	18.6	24.5	20.8	26.0			0.70

			CL	IMATO	OLOGI	CAL I	DATA			
Name	of station:	Thankama	ni	Year	2008			Month: Ap	ril	
					Ter	nperat	ure in ⁰ C	•	Anem o	
	Rainfal I	Evapora tion in					Ordinar	Wind directio	meter Redin	Wind Speed
Date	in mm	mm	Max.	Min.	Dry	Wet	У	n	g	(km/hr)
1	0.20		29.0	18.0	28.5	23.5	29.0	N-W	3764.5	0.004
2	3.60	1.60	29.0	20.0	29.0	24.5	30.0	N-W	3764.5	0
3	22.20	8.20	29.0	19.0	30.5	21.5	31.0	N	3767.9	0.142
4	0.00	4.00	30.0	17.0	32.0	22.0	32.0	N	3772.9	0.208
5	1.00		30.0	19.0	32.0	24.5	30.5	S	3778.3	0.225
6	0.00	4.80	30.0	19.0	32.5	24.0	32.5	N	3792.2	0.579
7	0.00	4.80	29.0	17.0	25.5	20.0	37.0	Z	3798.5	0.263
8	0.00	4.80	28.0	18.0	28.5	23.5	26.5	N-W	3812.6	0.587
9	0.00	4.80	29.0	17.0	21.0	19.5	22.0	V	3825.7	0.546
10	2.00	4.00	29.0	20.0	30.0	21.5	31.0	N-W	3833.3	0.317
11	5.00	4.00	28.0	22.0	36.0	22.0	27.0	N-W	3840.1	0.283
12	0.00	4.80	29.0	24.0	35.5	22.0	30.0	N-W	3842.2	0.087
13	2.20	0.20	29.0	20.0	30.0	25.0	30.0	N	3842.2	0
14	2.00	0.00	30.0	22.0	28.5	22.5	28.0	N-W	3842.2	0
15	0.00	4.80	28.0	22.0	28.0	23.0	27.0	N-W	3842.6	0.017
16	0.00	6.00	24.0	22.0	29.0	23.0	29.0	W	3842.6	0
17	0.00	4.80	24.0	22.0	30.0	22.0	27.0	W	3842.6	0
18	0.00	4.80	26.0	25.0	26.0	23.5	28.0	W	3842.6	0
10	0.00			24.0		24		NINA		0.004
19	0.00	6.20	25.0	21.0	27.0	5	29.0	N-W	3842.7	0.004
20	0.00	4.80	24.0	23.0	30.5	23.0	30.0	N-W	3842.7	0
21	0.00	4.80	26.0	21.0	28.5	23.5	30.0	N-W	3842.7	0
22	0.00	4.00	24.0	23.0	25.0	24.0	27.0	N N	3842.7	
23	0.00	4.80	24.0	23.0	32.0	22.0	30.0	W	3842.8	0.004
24	0.00	4.00	22.0	21.0	29.0	20.0	30.0	W	3842.8	0
25	0.00	4.00	26.0	23.0	26.5	24.5	29.0	W	3842.8	0
26	35.00	4.00	23.0	22.0	23.0	22.0	29.0	N	3843.1	0.012
27	0.00	1.80	23.0	22.0	26.0	25.0	29.0	N N	3843.1	0
28	1.80		27.0	18.0	20.0	18.0	21.0	N N	3843.1	0
29	0.00	4.00	23.0	22.0	23.0	22.0	28.0	N	3843.1	0
30		<u> </u>	1							
Total	75.00	104.80								
Mea										
n		4.19	26.8	20.8	28.4	22.6	28.9			0.11

CLIMATOLOGICAL DATA										
Name	of station:	Thankamani	Year 2008					Month: May		
	Rainfall Evaporation			Temperature in ⁰ C					Anemo meter	Wind Speed
Date	in mm	in mm	Max.	Min.	Dry	Wet	Ordinary	Wind direction	Reding	(km/hr)
1	0.00	4.00	32.0	18.0	22.0	21.0	23.5	W	3843.3	0.000
2	0.00	4.80	30.0	14.0	20.5	17.5	22.0	W	3843.3	0
3	0.00	4.00	29.0	17.0	23.5	21.5	24.0	W	3843.4	0.004
4	0.00	4.80	29.0	20.0	28.5	25.0	29.0	Е	3843.5	0.004
5	0.00	4.00	27.0	17.0	21.0	18.0	25.0	W	3843.5	0
6	0.00	4.00	30.0	19.0	21.5	21.0	23.5	Ν	3843.6	0.004
7	0.20	4.20	29.0	19.0	21.5	20.5	23.5	W	3843.7	0.004
8	1.00	4.00	30.0	19.0	21.0	20.5	22.5	W	3843.9	0.008
9	0.00	4.00	29.0	19.0	23.0	22.0	23.0	S	3844	0.004
10	0.20	5.00	29.0	19.0	24.0	22.5	27.0	N	3844.1	0.004
11	0.00	2.00	29.0	18.0	28.0	24.0	29.5	W	3844.1	0
12	0.00	4.00	29.0	19.0	24.0	22.0	23.0	W	3844.2	0.004
13	25.20	3.20	31.0	18.0	20.0	20.0	22.0	W	3845.1	0.038
14	0.00	4.00	28.0	18.0	22.5	21.5	24.0	N-W	3845.1	0
15	0.00	4.80	29.0	18.0	20.0	20.0	22.0	W	3845.2	0.004
16	0.00	2.00	24.0	23.0	23.0	22.0	26.0	N	3845.3	0.004
17	0.20	4.60	26.0	24.0	24.0	21.0	25.0	W	3845.4	0.004
18	0.00	5.20	29.0	18.0	24.5	24.0	29.5	W	3845.5	0.004
19	0.00	4.00	28.0	18.0	24.0	22.0	28.0	W	3845.6	0.004
20	0.00	4.80	30.0	19.0	26.0	24.5	27.0	W	3845.7	0.004
21	0.00	4.20	25.0	24.0	28.0	23.0	29.0	N-W	3845.8	0.004
22	1.00	5.80	25.0	25.0	27.0	24.0	32.0	N-W	3845.9	0.004
23	2.00	4.00	22.0	21.0	23.0	22.0	23.0	N-W	3846.1	0.008
24	0.00	4.00	27.0	26.0	27.0	23.0	30.0	N-W	3846.2	0.004
25	1.60	5.60	31.0	17.0	29.5	29.0	31.5	N	3846.3	0.004
26	0.20	4.20	29.0	18.0	28.0	26.0	28.0	N	3846.4	0.004
27	0.00	4.20	23.0	22.0	24.0	22.0	29.0	N-W	3846.4	0
28	0.00	4.50	25.0	23.0	27.0	23.0	29.0	N	3846.5	0.004
29	1.80	6.20	24.0	23.0	25.0	23.0	29.0	W	3846.5	0
30	2.90	4.90	24.0	22.0	25.0	23.0	A	W	3846.6	0.004
31										
Total	36.30	129.00								
Mean		4.30	27.7	19.8	24.2	22.3	26.2			0.005

			CLII	МАТС	טו טפו	ICAL	DATA			
Name	of station:	Thankamani	OLI		ear 20		PAIA	Month: J	une	
Data	Rainfall	Evaporation	Max		emper			Wind	Anemo meter	Wind Speed
Date	in mm	in mm	Max.	Min.	Dry	Wet	Ordinary	direction	Reding	(km/hr)
1	0.00	2.20	25.0	24.0	27.0	25.0	30.0	W	3846.6	0.000
2	0.00	1.80	25.0	24.0	25.0	23.0	29.0	W	3846.7	0.004
3	0.00	2.00	25.0	24.0	27.0	25.0	29.0	N-W	3846.7	0.000
4	0.00	4.80	24.0	23.0	25.0	23.0	30.0	W	3846.9	0.008
5	14.00	4.50	28.0	27.0	27.0	25.0	30.0	W	3847.5	0.025
6	3.70	3.70	26.0	27.0	28.0	25.0	30.0	W	3847.9	0.017
7	18.20	2.20	29.0	18.0	21.0	21.0	22.5	N-W	3847.7	-0.008
8	19.20	2.60	27.0	26.0	26.0	23.0	28.0	W-S	3847.8	0.004
9	0.00	2.00	28.0	24.0	23.0	21.0	27.0	N N	3847.9	0.004
10	18.60	2.80	23.0	22.0	24.5	23.0	26.0	N N	3848.1	0.008
11	8.20	1.40	22.0	20.0	25.0	24.0	28.5	N-W	3848.1	0.000
12	2.20	A	25.0	23.0	23.5	22.0	26.0	N N	3848.2	0.004
13	9.60	4.00	20.0	22.0	24.5	24.0	26.5	N N	3848.3	0.004
14	0.00	1.00	22.0	21.0	24.0	23.0	27.0	N-W	3848.4	0.004
15	32.00	3.20	26.0	22.0	21.5	21.0	23.5	N-W	3848.4	0.000
16	0.00	1.20	25.0	23.0	22.0	21.0	24.0	W	3848.5	0.004
17	58.00	Over flow	28.0	21.0	25.0	23.5	26.5	N-W	3848.6	0.004
18 19	12.00	4.00	21.0	20.0	23.0	22.0	22.0	N-W W	3848.7	0.004
	10.00	4.00	22.0	19.0	23.0	22.0	26.0		3848.8	0.004
20 21	0.00 15.80	0.00 3.60	25.0 28.0	24.0	25.0 23.5	23.0	29.0 25.0	N-W N-W	3848.8	0.000
22	10.20	3.60	28.0	22.0	28.0	24.5	28.5	N-W	3848.8 3848.8	0.000
23	5.70	3.00 A	28.0	23.0	24.0	23.0	29.0	N-W	3848.8	0.000
24	33.00	21.00	24.0	23.0	25.0	22.0	28.0	W	3848.8	0.000
25	11.20	0.10	23.0	21.0	23.0	22.0	26.0	W	3848.8	0.000
26	8.80	3.00	28.0	23.0	21.0	20.5	24.0	N-W	3848.8	0.000
27	17.00	7.00	27.0	21.0	21.0	20.5	22.0	W W	3849	0.008
28	21.00	6.20	28.0	29.0	22.0	21.0	23.0	N-W	3849.2	0.008
29	18.00	8.00	24.0	24.0	25.0	26.0	28.0	N-W	3849.2	0.000
30	41.00	Over flow	25.0	22.0	20.1	20.0	23.0	N-W	3849.2	0.000
31	71.00	Over now	20.0	22.0	20.1	20.1	23.0	111-11	JU+3.Z	0.000
31										
Total	387.40	99.90								
Mean		3.84	25.3	22.8	24.1	22.7	26.6			0.004

			C	LIMAT	roLo@	SICAL	DATA			
Name	of station:	Thankama			r 2008			h: July		
	Rainfal	Evapora tion in			empera	ture in		Wind directio	Anemo meter Readin	Wind Speed (km/hr
Date	in mm	mm	Max.	Min.	Dry	Wet	V	n	g	(KIII/III)
1	16.20	NA	23.0	21.0	23.0	22.0	26.0	N-W	3849.2	0.000
2	0.00	2.20	27.0	22.0	24.0	23.0	25.0	N-W	3849.2	0.000
3	4.80	4.80	29.0	21.0	24.0	22.5	26.0	N-W	3849.2	0.000
4	0.00	4.00	28.0	22.0	24.5	22.5	26.0	N-W	3849.2	0.000
5	0.00	4.20	25.0	23.0	23.0	23.0	26.0	W	3849.3	0.004
6	19.50	5.50	25.0	22.0	23.0	21.0	25.0	N-W	3849.3	0.000
7	19.50	5.50	20.0	19.0	22.0	22.0	24.0	N	3849.3	0.000
8	4.00	4.80	26.0	25.0	25.0	23.0	28.0	W	3849.3	0.000
9	5.80	NA	21.0	20.0	21.0	21.0	20.0	W	3849.4	0.004
10	14.20	0.00	23.0	21.0	22.0	21.0	22.0	W	3849.4	0.000
11	7.90	7.00	23.0	21.0	23.0	22.0	27.0	N-W	3849.4	0.000
12	17.00	NA	24.0	23.0	24.0	22.0	28.0	W	3849.4	0.000
13	4.30	2.00	24.0	22.0	24.0	23.0	29.0	W	3849.4	0.000
14	0.00	4.80	24.0	23.0	25.0	22.0	26.0	W	3849.4	0.000
15	0.00	2.20	28.0	17.0	26.5	26.0	29.0	N	3849.4	0.000
16	4.20	0.00	29.0	22.0	24.0	22.5	26.0	N	3849.4	0.000
17	1.40	1.40	25.0	22.0	26.0	23.5	29.0	N-W	3849.4	0.000
18	8.20	4.20	28.0	21.0	24.0	23.0	25.0	W	3849.4	0.000
19	61.80	Overflow	26.0	21.0	21.0	20.5	23.0	W	3849.4	0.000
20	2.20	2.00	23.0	20.0	25.5	23.5	27.0	N-W	3849.4	0.000
21	0.00	4.80	26.0	21.0	23.5	22.0	25.0	N	3849.4	0.000
22	4.80	4.00	25.0	23.0	24.0	22.0	28.0	W	3849.4	0.000
23	8.20	3.40	26.0	24.0	25.0	23.5	27.0	W	3849.4	0.000
24	24.80	8.00	25.0	23.0	24.0	22.0	24.0	N-W	3849.4	0.000
25	20.00	6.00	21.0	20.5	20.0	19.5	23.0	N-W	3849.4	0.000
26	36.00	21.20	21.0	23.0	20.5	20.0	22.0	N	3849.4	0.000
27	41.00	Overflow	22.0	20.5	19.5	19.5	21.0	W	3849.4	0.000
28	69.00	Overflow	21.0	21.0	23.5	21.5	21.5	N-W	3849.5	0.004
29	58.00	NA	NA	NA	NA	NA	NA	NA	NA	NA
30	63.2	NA	NA	NA	NA	NA	NA	NA	NA	NA
31	74.8	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total	590.80	102.00								
Mea	220.00									
n			24.6	21.6	23.4	22.1	25.3			0.000

			С	LIMA	TOLO	GICA	L DATA			
Name	of station	n: Thankam	nany		Year 2	2008	Mon	th: August		
Date	Rainfall in mm	Evapo ration in	Max.	To	emper Dry	ature i	n ⁰ C Ordinary	Wind direction	Anemo meter Reading	Wind Speed (km/hr)
1	18.00	NA	22.0	21.0	20.5	21.0	22.0	W	3849.5	0.004
2	33.00	NA	23.0	22.0	20.5	20.0	22.0	N	3849.5	0.000
3	2.40	NA	19.0	21.0	24.5	23.0	25.5	W	3849.5	0.000
4	34.00	NA	21.0	22.0	24.5	24.0	26.0	W	3849.5	0.000
5	9.80	NA	22.0	21.0	25.0	23.0	26.0	N-W	3849.5	0.000
6	3.60	NA	26.0	21.0	25.0	24.0	27.0	N-W	3849.5	0.000
7	0.00	NA	26.0	21.0	24.0	22.5	25.0	W	3849.5	0.000
8	15.00	NA	25.0	21.0	20.5	21.0	23.0	N	3849.5	0.000
9	0.00	NA	24.0	22.0	20.0	21.0	23.0	N	3849.5	0.000
10	42.40	NA	22.0	21.0	20.0	20.0	22.0	W	3849.5	0.000
11	56.00	NA	21.0	20.0	23.0	22.0	24.0	N-W	3849.5	0.000
12	78.00	NA	23.0	21.0	21.5	21.0	24.0	N-W	3849.5	0.000
13	29.00	NA	21.0	22.0	22.0	21.5	24.0	N-W	3849.5	0.000
14	23.20	NA	24.0	21.0	24.0	22.5	25.5	N	3849.5	0.000
15	40.00	NA	22.0	21.0	23.5	22.0	24.0	N	3849.5	0.000
16	0.00	NA	25.0	20.0	24.0	25.0	28.0	N	3849.5	0.000
17	2.00	NA	25.0	23.0	24.5	23.0	26.5	N-W	3849.5	0.000
18	1.20	NA	25.0	25.0	26.0	25.0	27.0	W	3849.5	0.000
19	3.20	NA	24.0	23.0	26.0	25.5	27.0	W	3849.5	0.000
20	1.20	NA	22.0	21.0	23.0	22.0	24.0	N-W	3849.5	0.000
21	15.20	NA	25.0	23.0	26.0	25.0	27.0	N-W	3849.5	0.000
22	4.00	4.00	28.0	21.0	29.5	28.5	30.0	W	3849.5	0.000
23	4.50	NA	25.0	25.0	23.0	22.0	27.0	N-W	3849.5	0.000
24	1.20	3.00	25.0	25.0	22.0	25.0	27.0	N-W	3849.5	0.000
25	7.20	5.00	27.0	21.0	28.0	25.0	28.5	N-W	3849.5	0.000
26	17.80	3.60	29.0	23.0	32.5	28.0	34.0	E-S	3849.5	0.000
27	27.60	10.60	34.0	23.0	39.5	33.5	42.0	W	3849.5	0.000
28	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
29	68.00	Overflow	36.0	22.0	41.5	33.5	33.0	N	3849.50	0.00
30	68.00	Overflow	35.0	22.0	29.5	25.5	30.0	N	3849.5	0.000
31										
Total	605.50									
Mean		5.55	25.0	21.9	25.3	24.0	26.7			0.000

			(CLIMA	ΓΟLΟΩ	SICAL	DATA			
Name o	f station:	Thanka			Year 2			Month: Sep	tember	
	Rainfa II	Evap orati on in		Ter	mperatu			Wind directio	Anemom eter	Wind Speed (km/hr
Date	in mm	mm	Max.	Min.	Dry	Wet	nary	n	Reading)
1	1.00	1.00	24.0	20.0	28.0	26.0	28.0	N-W	3849.5	0
2	24.20	6.00	28.0	22.0	29.0	25.5	30.0	W	3849.5	0
3	0.00	4.00	29.0	22.0	29.0	25.5	30.0	S	3849.5	0
4	0.00	4.80	30.0	21.0	30.5	26.5	31.5	N	3849.5	0
5	1.27	0.00	21.0	21.0	22.0	21.0	20.3	N-W	3849.5	0
6	66.00	1.20	22.0	21.0	21.0	20.0	24.0	N-W	3849.5	0
7	4.50	0.00	27.0	25.0	27.0	25.0	20.8	N-W	3849.5	0
8	4.00	0.00	29.0	26.0	23.0	26.0	24.0	N	3849.5	0
9	0.00	4.00	26.0	21.0	28.0	26.0	28.0	W	3849.5	0
10	0.00	4.00	27.0	23.0	27.0	25.0	27.0	N-W	3849.5	0
11	0.00	4.80	28.0	25.0	25.0	23.0	26.5	N-W	3849.5	0
12	0.00	4.80	29.0	24.0	29.0	25.0	23.0	W	3849.5	0
13	0.00	4.80	29.0	22.0	28.0	26.0	26.0	N-W	3849.5	0
14	0.00	4.00	30.0	24.0	30.0	27.0	24.0	W	3849.5	0
15	0.00	6.00	34.0	23.0	32.5	28.0	36.0	N-W	3849.5	0
16	0.00	4.00	36.0	21.0	23.5	22.0	24.5	W	3849.5	0
17	0.00	4.80	27.0	22.0	27.0	24.5	28.5	W	3849.5	0
18	0.00	4.80	27.0	23.0	33.0	30.0	31.0	W	3849.5	0
19	0.00	4.80	29.0	23.0	31.5	27.0	40.0	W	3849.5	0
20	109.80	4.80	30.0	22.0	26.0	24.0	28.0	W	3849.5	0
21	4.50		27.0	23.0	26.0	25.0	33.0	N-W	3849.6	0.004
22	2.60		29.0	24.0	28.0	25.0	30.0	N	3849.6	0.004
23	0.00	5.20	30.0	28.0	27.5	28.0	39.0	N-W	3849.6	0.004
24	0.00	4.80	29.0	22.0	28.5	27.0	30.0	S-W	3849.6	0.004
25	0.00	4.80	29.0	22.0	27.5	25.0	29.0	N	3849.6	0.004
26	0.00	4.00	29.0	24.0	27.5	25.0	30.0	N	3849.6	0.004
27	NA	NA	NA	NA	NA	NA	NA	NA	NA	0
28	NA	NA	NA	NA	NA	NA	NA	NA	NA	0
29	NA	NA	NA	NA	NA	NA	NA	NA	NA	0
30	NA	NA	NA	NA	NA	NA	NA	NA	NA	0
31										
Total	217.87									
Mean		3.81	28.3	22.9	27.5	25.3	28.5			0.001

			CLI	MATO	I OGIC	AI DA	ΤΔ			
Name o	f station:	Thankama			r 2008		onth:O	ctober		
Date	Rainfa II in mm	Evapor ation in mm	Max.		mperatu Dry		Ordi	Wind directi on	Anemo meter Reding	Wind Speed (km/hr
1	0.00	4.80	30.0	26.0	30.0	28.0	nary 28.0	N-W	3849.6	0.000
2	0.00	4.80	28.0	25.0	30.0	26.0	30.0	N	3849.6	0.000
3	0.00	5.20	30.0	28.0	30.0	28.0	30.0	N-W	3849.6	0.000
4	0.00	5.00	30.0	28.0	30.5	30.0	31.0	N-W	3849.6	0.000
5	1.80	5.80	30.0	27.5	30.5	28.0	31.0	N	3849.7	0.004
6	0.00	4.80	30.0	26.0	30.0	26.0	28.0	W	3849.7	0.004
7	0.00	4.80	30.5	28.0	30.0	27.0	28.0	N-W	3849.7	0.004
8	4.60	0.00	30.5	27.5	30.5	28.0	30.0	W	3849.8	0.008
9	0.00	4.80	28.0	26.0	30.5	26.0	31.0	W	3849.8	0.008
10	0.00	4.00	30.0	28.0	28.0	28.5	32.0	N-W	3849.8	0.008
11	0.00	5.20	30.0	27.0	30.0	28.0	30.0	W	3849.8	0.008
12	40.00	0.00	30.0	26.5	28.0	25.0	28.0	N-W	3849.9	0.013
13	46.00	0.00	28.0	26.0	28.5	25.0	28.5	N-W	3849.9	0.013
14	28.00	0.00	30.5	28.0	26.0	24.0	28.0	N-W	3849.9	0.013
15	8.00	0.00	28.0	22.0	22.0	22.0	24.0	N-W	3849.9	0.013
16	26.00	0.00	26.0	21.0	26.5	24.0	28.0	W	3850	0.017
17	2.00	0.00	28.0	26.0	30.0	28.0	28.0	Ν	3850.1	0.021
18	1.00	4.00	27.0	21.0	27.0	24.0	28.5	Ν	3850.2	0.025
19	3.00	0.00	28.0	26.0	28.0	26.0	31.0	Ν	3850.2	0.025
20	64.00	0.00	28.0	21.0	27.0	25.5	28.0	W	3850.2	0.025
21	35.20	0.00	28.0	21.0	21.0	20.5	22.5	N	3850.2	0.025
22	4.80	6.80	27.0	21.0	26.0	23.5	27.0	N-W	3850.2	0.025
23	32.00	0.00	24.0	23.5	25.0	23.0	25.0	N-W	3850.2	0.025
24	0.00	0.00	26.0	23.0	24.0	22.0	24.0	W	3850.2	0.025
25	2.60	0.00	25.0	22.0	22.0	21.5	23.5	N	3850.2	0.025
26	24.50	0.00	20.0	20.0	20.0	20.0	20.0	N	3850.2	0.025
27	0.20	5.00	28.0	23.0	28.0	24.5	29.0	N	3850.2	0.025
28	8.20	4.20	30.0	22.0	27.5	25.0	29.0	N	3850.2	0.025
29		0.00	28.0	22.0	26.5	24.0	28.0	W	3850.2	0.025
30		0.00								
31	0	6	29.0	22.0	30.0	25.5	31.0	N	3850.2	
Total	331.90									
Mean		2.43	28.2	24.5	27.4	25.2	28.0			0.015

			CI	IMAT	OLOGI	CAL F	ΟΔΤΔ			
Name o	f station:	Thankama			ar 2008			:Novemb	er	
	Rainfa II	Evapor ation in		Те	mperat	ure in ⁰		Wind directi	Anemo meter Readin	Wind Speed
Date	in mm	mm	Max.	Min.	Dry	Wet	ry	on	g	(km/hr)
1	0.00	5.20	30.0	17.8	29.5	25.5	30.0	N	3850.2	0.000
2	0.00	4.80	29.0	28.5	28.0	26.5	28.0	N-W	3850.2	0.000
3	0.00	4.80	28.5	26.0	29.0	27.0	30.0	N	3850.2	0.000
4	0.00	4.80	28.0	26.0	29.5	28.0	28.5	W	3850.2	0.000
5	0.00	4.80	26.0	24.0	28.0	26.5	28.0	N-W	3850.2	0.000
6	0.00	4.60	29.5	28.0	28.0	26.5	28.0	W	3850.2	0.000
7	0.00	4.80	28.0	21.0	26.0	25.5	30.0	W	3850.2	0.000
8	1.80	4.20	29.0	16.0	22.5	21.0	23.5	W	3850.2	0.000
9	0.00	4.80	28.5	26.0	26.0	25.0	26.0	N-W	3850.2	0.000
10	0.00	4.60	29.0	26.5	28.0	26.5	28.0	N-W	3850.2	0.000
11	0.00	5.00	28.0	26.0	26.5	26.0	26.0	N-W	3850.2	0.000
12	0.00	4.60	29.0	28.0	26.5	25.0	28.0	N-W	3850.2	0.000
13	29.20	8.00	29.5	26.0	23.0	20.5	26.0	W	3850.3	0.046
14	2.80	0.00	30.0	24.0	29.0	25.0	30.0	N	3850.3	0.000
15	0.00	4.60	29.0	17.0	28.5	24.5	30.0	E-N	3850.3	0.000
16	29.20	8.00	25.0	25.0	25.0	24.5	25.0	E-W	3850.3	0.000
17	0.00	4.60	28.5	26.0	24.0	23.0	24.5	N-W	3850.3	0.000
18	0.00	4.00	29.0	26.0	22.5	21.0	24.0	W	3850.3	0.000
19	7.40	1.60	28.0	26.5	23.5	21.0	23.0	W	3850.3	0.000
20	1.20	5.20	29.0	22.0	22.0	20.0	26.5	N-W	3850.4	0.005
21	4.50	0.00	29.0	22.0	27.5	24.0	29.0	W	3850.5	0.005
22	19.20	2.20	26.0	24.5	23.5	21.0	24.0	W	3850.6	0.005
23	0.00	4.80	28.0	26.5	26.5	26.0	23.5	N-W	3851.2	0.025
24	6.20	0.00	28.0	26.0	24.5	22.0	24.0	W	3851.2	0.000
25	3.40	0.00	28.5	26.5	23.5	21.0	24.5	N	3851.2	0.000
26	0.00	4.60	24.5	24.5	24.5	22.5	26.0	N	3851.2	0.000
27	0.00	5.20	29.5	23.0	28.0	24.5	29.5	N	3851.2	0.000
28										
29										
30										
31										
Total	104.90									
Mean		4.07	28.3	24.4	26.0	24.1	26.8			0.003

Name o	f station:	Thankama	ny	Year	2008	M	onth:Dec	ember		
	Rainf all	Evapora			mperati	ure in ⁰ C	:	Wind	Anemo	Wind Speed
	in	tion in		Min			Ordina	directio	meter	(km/hr
Date	mm	mm	Max.		Dry	Wet	ry	n	Reading)
1	4.40	2.20	29.0	16.0	26.0	22.5	28.0	N-W	3852.5	
2	2.00	0.00	29.0	17.0	27.5	23.5	29.0	N-W	3853	0.021
3	0.00	2.40	29.0	16.0	28.0	23.0	29.0	N	3853.2	0.003
4	0.00	2.00	22.0	16.0	21.0	16.5	18.0	N	3858.7	0.229
5	0.00	2.20	23.5	17.0	22.0	18.0	16.0	N-W	3861.3	0.108
6	0.00	2.40	24.5	16.0	22.5	19.5	18.5	N	3862.2	0.038
7	0.00	2.40	26.0	17.0	22.0	18.5	19.0	W	3863.1	0.038
8	0.00	2.60	26.0	18.0	23.0	20.0	20.0	W	3864.2	0.046
9	0.00	2.80	26.5	18.0	24.0	20.5	17.0	W	3866.8	0.108
10	0.00	4.00	26.5	16.0	24.0	20.5	16.5	N-W	3866.9	0.004
11	0.00	4.00	26.5	16.0	25.0	21.0	16.0	N-W	3867.2	0.013
12	0.00	4.60	27.0	16.0	26.0	22.5	16.5	N	3867.4	0.008
13	0.00	4.00	27.5	14.0	21.0	19.5	17.0	N	3868.9	0.063
14	0.00	2.80	25.0	16.0	20.0	16.5	16.5	N	3869.2	0.013
15	0.00	4.00	24.0	16.0	21.0	18.5	18.0	W	3869.5	0.013
16	0.00	4.60	25.5	17.0	22.0	20.0	18.5	N-W	3872.4	0.021
17	0.00	4.80	26.5	18.0	22.5	19.0	16.5	W	3874.8	0.100
18	0.00	4.40	26.0	18.0	22.5	20.5	17.0	N	3882.6	0.325
19	0.00	4.40	24.0	18.0	22.5	22.0	16.5	N	3884.3	0.070
20	4.40	0.00	29.0	20.0	22.0	21.0	23.0	N-W	3886.1	0.075
21	0.00	2.20	23.0	16.0	18.5	17.0	16.0	N-W	3887.6	0.063
22	0.00	2.40	26.0	12.0	15.5	15.0	12.0	W	3889.8	0.092
23	0.00	2.40	27.0	11.0	18.5	17.5	19.0	N	3895	0.217
24	0.00	4.00	27.5	12.0	24.5	22.0	20.0	W	3912.8	0.742
25	0.00	4.20	24.0	11.0	25.0	21.0	14.5	W	3913.6	0.021
26	2.20	0.40	27.0	11.0	15.0	14.5	11.5	N-W	3913.6	0.013
27	0.00	4.20	26.0	13.0	23.0	21.0	22.5	N	3916.4	0.116
28	0.00	4.20	26.0	11.0	26.0	24.0	22.0	W	3917.9	0.063
29	0.00	2.40	22.0	14.0	18.0	17.0	16.0	W	3919.4	0.063
30	0.00	2.20	22.5	16.0	19.0	17.5	18.5	N	3925	0.233
31	0	4.8	28.0	11.0	25.0	24.0	26.0	W	3926.6	0.066
Total	13.00			-		-				
Mean	0.81	3.03	25.9	15.3	22.3	19.8	18.9			0.100

			С	LIMAT	OLOG	ICAL [DATA			
Name of	fstation	: Thankan	nani		Year 20	009	Me	onth: Jan	uary	
Date	Rainf all in mm	Evapor ation in	Max.	Min.	Tem Dry	peratur Wet	e in ⁰ C Ordina ry	Wind directi on	Anemo meter Reding	Wind Speed (km/hr)
1	0.00	2.60	28.0	11.0	28.5	27.0	28.0	N-W	3941.4	0.617
2	0.00	2.80	28.5	12.5	26.5	24.5	28.5	N-W	3941.4	0.000
3	0.00	3.20	28.0	12.5	28.0	26.0	28.0	N-W	3945.4	0.167
4	0.60	3.20	28.0	11.5	28.5	27.0	28.0	N-W	3947.6	0.092
5	0.00	3.20	28.5	11.0	28.0	27.0	28.5	N-W	3949.7	0.088
6	0.00	2.80	28.0	11.0	28.0	27.0	28.5	N	3950.7	0.042
7	0.00	2.00	28.0	12.0	27.0	22.5	28.5	N-W	3953.2	0.104
8	0.00	2.00	28.0	12.0	26.5	25.5	28.0	N-W	4023.9	2.945
9	0.00	2.80	28.5	11.5	28.5	27.5	28.5	N-W	4023.9	0.000
10	0.00	2.80	28.5	11.5	27.0	26.0	28.5	N-W	4023.9	0.000
11	0.00	2.80	28.0	11.5	26.0	25.5	28.5	W	4023.9	0.000
12	0.00	3.00	28.0	11.0	26.5	25.5	28.0	W	4023.9	0.000
13	0.00	3.00	28.0	12.0	26.5	25.5	28.0	W	4023.9	0.000
14	0.00	3.00	28.0	11.0	26.5	25.5	28.0	N-W	4042.8	0.788
15	0.00	3.00	27.5	12.0	26.0	24.0	27.0	Ν	4060.8	0.750
16	0.00	2.80	28.0	12.0	26.5	26.0	28.0	Ν	4075.5	0.613
17	0.00	2.80	28.5	12.5	27.5	26.0	28.0	N	7083.6	0.337
18	0.00	2.80	28.5	12.5	27.5	26.0	27.5	Ν	7091.7	0.338
19	1.60	0.00	28.0	12.5	28.0	27.0	27.5	N	4103.5	0.492
20	0.00	2.80	28.0	14.0	26.5	26.0	28.0	N	4110.4	0.287
21	0.00	2.00	27.5	13.5	26.5	25.5	27.0	N-W	4110.7	0.013
22	0.00	2.00	27.5	14.0	27.0	26.5	27.0	N-W	4110.8	0.004
23	0.00	2.00	27.0	14.0	26.5	26.0	26.5	N-W	4110.9	0.004
24	0.00	2.80	27.0	14.0	26.5	26.0	26.5	W	4111.2	0.013
25	0.00	2.80	27.0	14.5	26.5	26.0	26.5	W	4111.4	0.008
26	0.00	2.80	27.0	12.0	26.5	26.0	26.0	W	4111.7	0.017
27	10.20	1.40	27.5	14.0	27.5	26.5	27.5	N-W	4112.1	0.017
28	0.00	2.00	28.0	14.5	28.0	27.0	28.0	N-W	4112.5	0.017
29	0.00	2.80	27.0	12.5	28.5	27.0	26.0	N	4112.6	0.004
30	0.00	4.00	28.0	12.0	25.0	22.0	28.0	N	4113	0.017
31	0.00	4.80	28.0	12.0	25.5	22.5	29.0	W	4115	0.083
Total	12.40									
Mean		2.67	27.9	12.4	27.0	25.7	27.7			0.253

			•		01.00	ICAL F	NATA			
Name	f etetien:	Thankam		LIWAI	OLOG Year 2			Month: Fe	- hwieni	
name o	Station.	Папкап	iani		rear 2	009		WOITH: FE	Anemo	
	Rainf	Evapor			Tem	peratur	e in ⁰ C	Wind	meter	Wind
	all in	ation					Ordin	directi	Readin	Speed
Date	mm	in mm	Max.	Min.	Dry	Wet	ary	on	g	(km/hr)
1	0.00	6.20	29.0	12.0	27.5	22.5	27.0	W	4117.8	0.116
2	0.00	6.00	29.0	12.0	27.5	27.0	29.0	N	4120.3	0.104
3	0.00	6.00	29.0	12.0	27.0	22.5	29.0	W	4124.8	0.188
4	0.00	6.20	29.0	12.0	30.0	23.5	29.0	N	4130.4	0.233
5	0.00	6.20	29.0	12.0	30.0	22.0	29.0	N	4132.9	0.104
6	0.00	6.20	29.0	12.0	30.0	22.5	29.0	W	4134.4	0.063
7	0.00	6.00	29.0	12.0	29.0	22.5	29.0	W	4140.1	0.238
8	0.00	6.00	29.0	12.0	0.0	0.0	29.0	N	4143.7	0.150
9	0.00	6.00	29.0	12.0	27.5	27.0	29.0	N-W	4145.1	0.058
10	0.00	6.00	29.0	12.0	27.0	21.5	29.0	N	4147.2	0.088
11	0.00	6.20	29.0	12.0	30.0	22.5	29.0	W	4147.2	0.000
12	0.00	6.00	29.5	12.0	29.0	22.0	29.5	W	4147.2	0.000
13	9.40	5.20	31.0	11.0	18.5	18.0	31.0	W	4147.2	0.000
14	0.00	0.00	29.5	12.0	27.5	27.0	29.5	N	4147.3	0.004
15	0.00	6.00	29.0	12.0	28.5	22.5	29.0	N-W	4147.5	0.008
16	0.00	6.20	29.0	12.0	30.0	21.5	29.0	N-W	4152.5	0.208
17	0.00	6.20	29.0	12.0	30.0	22.5	29.0	Ζ	4158.4	0.246
18	0.00	6.20	29.0	11.0	30.0	22.0	29.0	N-W	4162.6	0.175
19	0.00	6.20	29.5	12.0	28.5	22.0	29.5	Z	4173.1	0.438
20	0.00	6.00	29.5	12.0	28.5	22.5	29.5	Ζ	4173.1	0.000
21	0.00	6.00	29.5	12.0	29.0	22.5	29.5	Z	4179.9	0.324
22	0.00	6.20	29.5	12.0	28.5	22.5	29.5	N	4180.1	0.008
23	0.20	0.08	29.5	12.0	28.0	22.0	29.5	N-W	4189.4	0.388
24	0.20	0.10	29.0	11.0	28.5	27.0	29.0	N-W	4190.1	0.029
25	0.20	0.08	29.0	11.0	28.5	27.5	29.0	N-W	4190.1	0.000
26	0.00	0.00	30.0	12.0	33.5	32.5	30.0	Ν	4190.9	0.033
27	0.00									
28	0.00									
29										
30										
31										
Total	10.00									
Mean	0.69	4.9	29.3	11.8	27.4	22.6	29.2	-		0.123

			C	LIMAT	വര	ICAL	ΠΑΤΑ			
Name o	f station:	Thankama			2009	ICAL		nth: March		
	Rainfa	Evapor				peratu	re in ⁰ C	Wind	Anemo meter	Wind
Doto	II in mm	ation in	Max.	Min.	Dry	Wet	Ordina	directio	Readin	Speed (km/hr)
Date 1	in mm 0.00	mm 2.20	32.0	13.0	28.5	28.0	ry 30.0	n W	g 4180.3	(KIII/III)
2	0.00	4.20	32.0	13.0	26.5	26.0	30.0	N-W	4181.4	0.046
3	0.00	4.80	33.0	12.0	26.5	26.0	28.0	N-W	4190.7	0.388
4	0.00	4.80	33.0	12.0	19.5	19.0	21.0	W	4194.3	0.150
5	0.00	4.80	33.0	12.0	26.0	25.5	28.0	N	4196.4	0.087
6	0.00	5.20	32.0	13.5	26.5	26.0	28.0	N	4196.5	0.004
7	0.00	4.80	32.5	12.5	28.0	27.0	28.0	N	4196.6	0.004
8	0.00	4.00	32.0	13.0	28.0	26.5	30.0	N	4196.8	0.008
9	0.00	4.00	33.0	13.0	28.5	28.0	30.0	N	4198.2	0.058
10	0.00	4.80	33.0	13.5	28.0	26.5	31.0	W	4198.4	0.008
11	0.00	4.80	33.0	13.0	28.5	26.0	30.0	W	4201.2	0.117
12	0.00	4.80	32.5	12.0	26.0	25.5	30.5	W	4203.8	0.108
13	43.00	1.60	33.0	12.5	29.5	29.0	30.0	N	4205.3	0.063
14	0.00	2.60	32.0	12.5	29.5	28.0	30.0	N	4205.4	0.004
15	0.00	2.80	32.0	13.0	28.5	28.0	28.0	W	4205.9	0.021
16	20.00	3.60	32.5	13.5	26.5	26.0	29.0	W	4206.5	0.025
17	26.00	4.80	33.0	13.0	28.5	28.0	31.0	W	4207.3	0.033
18	0.00	7.90	33.0	13.0	26.5	26.0	31.0	N	4208.4	0.046
19	0.00	4.80	32.0	13.0	30.0	28.0	32.5	N	4208.4	0.000
20	0.00	6.00	33.0	13.0	30.5	30.0	30.0	N	4208.4	0.000
21	0.00	6.00	32.0	13.0	22.5	21.5	25.0	W	4208.6	0.008
22	0.00	6.00	32.5	13.5	32.0	31.0	29.0	W	4208.7	0.004
23	0.00	6.00	33.0	13.5	32.0	31.5	30.0	W	4208.8	0.004
24	0.00	6.00	33.0	12.5	32.0	30.5	31.0	N	4209.3	0.021
25	16.20	0.00	32.0	12.5	26.5	24.0	31.0	N	4209.4	0.004
26	0.00	6.00	32.0	12.0	30.0	28.0	31.0	W	4209.5	0.004
27	0.00	6.00	32.0	12.0	30.5	30.0	30.0	W	4209.6	0.004
28	5.00	0.80	32.0	12.0	19.5	19.0	21.0	W	4210	0.017
29	0.00	6.00	32.0	12.0	30.5	30.0	21.0	W	4210.2	0.008
30	0.00	6.00	32.0	13.0	30.0	28.0	21.0	W	4210.7	0.021
31	0.00	6.20	32.0	13.5	30.0	28.5	22.0	W	4212.7	0.083
Total	110.20									
Mean		4.6	32.5	12.8	27.9	26.9	28.3			0.045

				CLIMA	ATOLO	GICAL	DATA			
Name of	fstation	: Thanka	mani		r 2009			nth: April		
	Rainf all in	Evap oratio n in			Ten	nperatur	e in ⁰ C Ordina	Wind directio	Anemo meter	Wind Speed
Date	mm	mm	Max.	Min.	Dry	Wet	ry	n	Reding	(km/hr)
1	0.00	6.00	33.0	13.0	26.0	24.5	24.5	W	4193.7	0.079
2	0.00	6.20	32.0	13.0	26.0	24.0	24.0	W	4195.6	0.046
3	0.00	6.20	33.5	13.5	26.5	24.5	24.0	N	4196.7	0.067
4	0.00	6.00	33.0	13.5	26.0	24.0	24.5	N	4198.3	0.054
5	0.00	4.80	33.0	13.5	26.0	24.5	24.0	N-W	4199.6	0.133
6	0.00	4.80	33.5	13.0	26.5	22.0	24.5	N-W	4202.8	0.079
7	0.00	4.80	33.5	13.0	26.0	22.5	24.0	N-W	4204.7	0.004
8	0.00	4.80	33.0	13.5	26.5	24.0	24.5	N	4204.8	0.054
9	33.20	6.80	33.0	13.5	25.5	24.0	25.5	N	4206.1	0.008
10	0.00	4.00	33.0	13.5	26.0	24.0	24.0	W	4206.3	0.063
11	0.00	4.00	33.5	12.0	26.5	24.0	24.5	W	4207.8	0.029
12	0.00	4.80	33.0	12.5	26.0	24.5	24.0	N	4208.5	0.008
13	0.00	4.80	33.0	13.5	24.0	22.0	22.5	N-W	4208.7	0.079
14	0.00	4.80	33.5	13.5	24.5	24.0	24.0	N-W	4210.6	0.012
15	0.00	4.80	33.5	13.0	24.5	24.0	24.0	N-W	4210.9	0.067
16	0.00	5.20	33.0	13.0	24.5	24.0	24.0	W	4212.5	0.008
17	0.00	4.80	33.0	13.0	26.0	24.5	24.0	W	4212.7	0.021
18	30.00	9.00	32.5	13.0	22.5	22.0	21.5	Ν	4213.2	0.004
19	0.00	4.80	32.5	13.5	23.5	22.0	22.5	Ν	4213.3	0.004
20	0.00	5.20	32.5	13.0	23.5	22.5	22.0	N-W	4213.4	0.029
21	0.00	4.80	33.0	12.5	23.5	22.5	22.0	N-W	4214.1	0.008
22	0.00	4.80	32.5	12.5	24.5	24.0	24.5	S	4214.3	0.079
23	0.00	4.80	32.5	12.5	24.5	24.0	24.0	N-W	4216.2	0.008
24	0.00	4.00	33.0	13.0	26.5	26.0	21.5	W	4216.4	0.092
25	16.00	4.80	32.0	13.5	24.5	22.5	21.5	W	4218.6	0.004
26	0.00	4.80	32.0	13.5	26.5	22.5	22.0	N	4218.7	0.017
27	0.00	4.80	32.0	13.0	23.5	23.0	24.5	N-W	4219.1	0.063
28	0.00	4.00	32.0	13.0	23.0	22.5	24.5	N-W	4220.6	0.225
29	0.00	4.80	33.5	13.0	22.5	22.0	24.0	N-W	4226	0.033
30	0.00	4.00	31.5	13.0	27.0	26.5	24.0	N-W	4226.8	0.000
Total	79.20									
Mean		5.1	32.8	13.1	25.1	23.6	23.6			0.045

				CLIMA	TOLO	GICAL	DATA			
Name of	station:		mani	١	ear 200			nth: May	1	
	Dains	Evap			Ten	nperature	in ⁰ C	VA/Const	A	AACI
	Rainf all in	orati on in					Ordin	Wind directi	Anemo meter	Wind Speed
Date	mm	mm	Max.	Min.	Dry	Wet	ary	on	Reading	(km/hr)
1	0.00	0.00	32.0	14.0	30.0	28.0	32.0	N	4226.8	0.004
2	0.00	0.00	32.0	14.0	29.0	27.5	29.5	N	4226.9	0.000
3	0.00	0.00	32.0	14.0	29.0	26.5	29.5	W	4226.9	0.000
4	0.00	0.00	32.0	14.0	26.0	25.5	28.5	N	4226.9	0.000
5	0.00	0.00	32.0	14.0	27.0	25.5	28.0	N	4226.9	0.000
6	0.00	0.00	32.0	14.0	23.5	22.5	25.0	N	4226.9	0.004
7	8.80	0.00	32.0	14.0	19.5	19.5	21.0	W	4227	0.000
8	0.00	0.00	32.0	14.0	22.0	21.5	23.5	W	4227	0.000
9	0.00	0.00	32.0	14.0	26.0	25.0	27.0	N	4227	0.004
10	0.00	0.00	32.0	14.0	26.0	25.5	28.5	Ν	4227.1	0.000
11	0.00	0.00	32.0	14.0	27.0	25.0	29.5	N	4227.1	0.000
12	0.00	0.00	32.0	15.0	30.0	27.0	31.5	N	4227.1	0.000
13	3.60	0.00	32.0	14.0	30.0	20.0	29.5	W	4227.1	0.000
14	0.00	0.00	32.0	15.0	30.0	27.0	32.0	W	4227.1	0.000
15	0.00	0.00	32.0	15.0	27.5	25.5	29.0	N	4227.1	0.000
16	5.20	0.00	32.0	15.0	20.0	20.0	22.5	S	4227.1	0.000
17	0.00	0.00	32.0	15.0	27.0	26.0	28.5	Ζ	4227.1	0.000
18	0.00	0.00	32.0	15.0	27.5	26.0	28.5	Z	4227.1	0.000
19	0.00	0.00	32.0	15.0	25.0	25.0	29.0	Ζ	4227.1	0.000
20	18.00	0.00	32.0	15.0	25.0	24.5	28.0	N-W	4227.1	0.000
21	23.00	0.00	32.0	15.0	26.0	22.0	26.5	N	4227.1	0.000
22	0.00	0.00	32.0	15.0	26.5	24.5	27.5	N-W	4227.1	0.000
23	1.40	0.00	32.0	15.0	28.0	25.0	27.5	N-W	4227.1	0.000
24	0.80	0.00	32.0	16.0	27.0	24.0	27.5	N	4227.1	0.000
25	19.60	0.00	32.0	16.0	24.0	20.0	25.5	N	4227.1	0.000
26	0.00	0.00	32.0	15.0	27.0	24.0	26.0	N	4227.1	0.000
27	0.00	0.00	32.0	15.0	27.5	25.0	27.0	N	4227.1	0.000
28	0.00	0.00	32.0	16.0	27.0	25.5	28.0	N	4227.1	0.000
29	0.00	0.00	32.0	17.0	27.0	25.0	28.0	W	4227.1	0.000
30	3.40	0.00	32.0	17.0	26.0	24.0	27.0	N	4227.1	0.000
31	6.00	0.00	32.0	17.0	27.5	25.5	29.0	N-W	4227.1	
Total	89.80									
Mean			32.0	14.9	26.5	24.4	27.7			0.000

	CLIMATOLOGICAL DATA									
Name	of station:	Thankamani	CLII		/ear 20			onth: June		
	Rainfall	Evaporation		Temperature in ⁰ C Wind		Anemo meter	Wind Speed			
Date	in mm	in mm	Max.	Min.	Dry	Wet	Ordinary	direction	Reding	(km/hr)
1	0.00		32.0	17.0	26.0	24.0	27.0	N-W	4227.2	0.000
2	0.00		32.0	17.0	28.5	25.5	30.0	N	4227.2	0.000
3	0.00		32.0	17.0	28.0	25.0	29.5	N	4227.2	0.000
4	0.80		32.0	17.0	26.0	23.5	27.5	N	4227.2	0.000
5	0.40		32.0	16.5	26.0	25.5	22.0	N	4227.2	0.000
6	46.00		32.0	17.0	22.0	21.0	18.0	N-W	4227.2	0.000
7	54.00		32.0	17.0	22.0	20.5	18.0	N-W	4227.2	0.000
8	46.00		32.0	17.0	24.0	22.0	19.0	N	4227.2	0.000
9	26.00		32.0	17.0	26.0	23.5	21.0	N	4227.2	0.000
10	6.00		32.0	17.0	26.5	23.5	28.0	N	4227.2	0.000
11	0.00		26.0	23.0	24.5	23.5	28.0	N	4227.2	0.000
12	0.00		33.0	20.0	27.5	24.5	28.0	N	4227.2	0.000
13	7.40		33.0	19.5	23.5	22.5	24.5	N-W	4227.2	0.000
14	0.40		26.0	20.0	25.0	23.0	26.0	N-W	4227.2	0.000
15	0.40		33.0	22.5	26.5	23.5	27.0	N	4227.2	0.000
16	10.50		32.0	21.0	27.5	24.0	27.0	N-W	4227.2	0.000
17	4.80		32.5	20.5	24.5	23.5	26.0	N-W	4227.2	0.000
18	11.00		24.0	19.0	24.0	23.0	26.0	N-W	4227.2	0.000
19	3.80		34.5	20.0	27.0	24.0	27.0	N	4227.2	0.000
20	3.50		25.0	20.5	23.0	22.0	24.0	N-W	4227.2	0.000
21	2.80		24.0	19.0	26.0	23.0	26.0	N-W	4227.2	0.000
22	3.40		25.0	20.5	26.0	23.0	27.0	N-W	4227.2	0.000
23	14.20		25.5	21.0	22.5	22.0	24.0	N-W	4227.2	0.000
24	11.00		24.5	20.5	25.0	23.0	26.0	N	4227.2	0.000
25	8.60		25.0	21.0	23.0	22.0	25.0	N-W	4227.2	0.000
26	60.00		23.5	18.5	19.5	19.0	21.0	N	4227.2	0.000
27	3.20		25.0	20.5	26.0	23.0	27.0	N-W	4227.2	0.000
28	2.00		26.0	20.5	26.0	23.0	27.0	N-W	4227.2	0.000
29	19.20		26.0	20.0	26.0	23.0	26.0	N-W	4227.2	0.000
30	32.40		25.5	19.0	23.5	22.5	25.0	N	4227.2	0.000
Total	377.80					_				
Mean			29.0	19.2	25.1	23.0	25.3			0.000

CLIMATOLOGICAL DATA										
Name of	station:	Thankamani		Year :		IOAL		nth: July		
	Rainfa	-			Ter	nperati	ure in ⁰ C	Wind	Anemo	Wind
Date	II in mm	Evaporati on in mm	Max.	Min.	Dry	Wet	Ordinar y	directi on	meter Reading	Speed (km/hr)
1	25.00		21.0	19.0	21.0	20.5	22.5	N-W		,
2	45.60		22.0	20.0	21.0	20.0	23.0	N		
3	46.90		25.0	18.5	21.5	21.0	23.0	N		
4	37.00		22.5	19.0	21.5	21.0	23.0	N-W		
5	34.80		21.0	19.0	22.0	21.5	23.5	N		
6	0.00		22.0	19.0	22.0	21.0		N		
7	19.40		24.0	19.0	26.0	24.0	24.0	N-W		
8	16.30		21.0	19.0	21.5	21.0	24.0	N-W		
9	33.20		23.0	19.0	22.0	21.5	24.0	N-W		
10	11.40		22.5	19.0	23.5	22.0	26.0	N		
11	12.20		23.5	19.0	23.5	21.0	26.0	N-W		
12	3.00		24.0	19.0	22.5	22.0	26.0	N		
13	12.00		23.0	19.0	23.0	22.0	24.0	N		
14	46.40		24.0	19.0	22.0	21.5	24.0	N-W		
15	24.00		22.5	19.0	22.5	21.5	25.0	N		
16	75.40		22.5	19.5	22.0	21.0	23.5	N-W		
17	42.00		21.5	18.5	21.5	21.0	24.0	N-W		
18	88.20		21.0	18.0	19.5	19.0	21.5	N-W		
19	12.00		22.5	19.0	22.5	21.5	24.5	N		
20	8.20		22.0	21.0	21.5	20.0	23.5	N-W		
21	28.00		22.0	20.0	22.0	21.5	24.0	N		
22	13.00		23.5	19.5	23.5	19.5	25.0	N		
23	5.20		25.0	20.0	25.5	23.0	27.5	N-W		
24	0.00		26.0	19.0	27.0	23.0	28.5	N-W		
25	0.00		24.0	20.0	22.0	21.0	27.0	N		
26	0.00		24.0	20.0	24.0	20.5	23.0	N-W		
27	1.00		25.0	20.0	22.0	20.0	24.0	N		
28	5.60		26.0	21.0	22.0	21.0	25.0	N		
29	23.40		27.0	20.0	22.0	21.5	24.0	N		
30	11.00		26.0	20.0	26.0	23.0	28.0	N-W		
31	6.40		25.5	19.5	24.0	23.0	25.5	N-W		
Total	686.60									
Mean			23.4	19.4	22.7	21.3	24.6			

	CLIMATOLOGICAL DATA									
Name of	f station:	Thankam			Year 20		DAIA	Month:	August	
	Rainfa	Evapo		Temperature in ⁰ C		Wind	Anemo	Wind		
Date	II in mm	ration in mm	Max.	Min.	Dry	Wet	Ordin ary	directio n	meter Reading	Speed (km/hr)
1	19.40	3.00	24.0	19.5	21.0	20.5	23.5	N		,
2	8. 0	2.50	22.5	20.0	23.5	22.0	26.0	N		
3	2.40	2.00	25.0	18.0	24.0	22.5	26.5	N-W		
4	15.00	2.10	25.0	20.0	22.5	22.0	24.5			
5	4.80	3.80	26.0	20.0	26.0	25.0	25.0	N-W		
6	2.20	0.60	26.5	21.0	26.5	25.5	27.0	N		
7	1.90	2.50	26.5	21.0	26.0	25.0	26.0	W		
8	0.00	3.80	27.0	21.0	25.5	21.5	26.0	N-W		
9	1.20	0.80	27.5	20.0	26.5	23.0	26.0	N-W		
10	47.40	8.60	27.0	20.0	22.0	21.5	23.5	N		
11	21.40	0.40	23.0	19.0	23.5	22.0	25.0	N-W		
12	10.00	0.80	24.5	19.5	25.0	23.0	27.0	N		
13	1.60	0.60	27.5	19.5	25.5	22.5	28.0	N		
14	1.90	1.10	26.5	19.5	25.0	23.0	27.5	N-W		
15	9.50	0.60	27.0	20.0	26.0	23.0	27.0	N-W		
16	12.60	0.00	27.5	18.0	26.0	22.5	28.0	N-W		
17	2.00	1.00	26.0	16.0	20.5	20.0	24.0	W		
18	4.40	4.40	32.0	18.0	30.0	25.0	31.0	N		
19	26.20	3.20	30.0	18.0	27.5	22.5	29.0	W		
20	4.20	0.20	30.0	22.0	25.5	21.5	26.5	W		
21	0.00	3.20	32.0	22.0	27.0	23.0	28.0	N		
22	3.20	6.00	32.5	22.5	27.0	23.0	28.5	N		
23	26.40	0.20	32.0	22.0	22.0	21.5	24.0	W		
24	0.00	0.00								
25	0.00	0.00								
26	46.00	0.00	32.0	20.0	24.0	21.5	25.5	N		
27	0.00	0.00	25.0	21.0	26.5	25.0	27.5	N		
28	26.00	0.00	25.0	22.0	26.5	26.0	25.5	N		
29	2.20	0.20	27.0	20.0	28.0	25.5	29.0	N		
30	24.60	6.00	27.0	21.0	20.5	19.5	21.5	N		
31	7.40	1.20	25.0	21.0	25.5	24.0	27.0	N		
Total	323.90									
Mean		1.9	27.2	20.1	25.0	22.8	26.3			

	CLIMATOLOGICAL DATA									
Name of	f station:	Thankama	ni		Year 20	09	Mor	nth: Septe	ember	
	Rainfa II	Evapor ation in		Temperature in ⁰ C Ordina		Wind directi	Anemo meter	Wind Speed		
Date	in mm	mm	Max.	Min.	Dry	Wet	ry	on	Reading	(km/hr)
1	28.70	0.90	26.0	21.0	21.5	21.0	23.0	Ν		
2	46.20	7.20	26.0	21.0	21.5	21.0	23.0	Ν		
3	10.00	3.80	26.0	21.0	21.0	20.5	22.0	Ν		
4	4.20		26.5	22.0	22.5	22.0	25.0	W		
5										
6										
7										
8	18.00	4.00	24.0	20.0	24.5	24.0	26.0	W		
9										
10	4.00	2.00	32.0	22.0	28.5	26.0	31.0	N		
11	0.00		23.5	20.0	24.5	24.0	25.0	W		
12										
13										
14										
15										
16	0.00		27.0	20.0	25.5	24.0	27.0	N		
17										
18	2.60		26.0	21.0	27.5	25.0	28.5	N		
19	5.00		27.0	21.0	26.5	24.0	28.0	N		
20			27.0	21.0	26.5	24.0	28.0	N		
21	7.60		27.0	21.0	22.5	22.0	23.0	N		
22	3.20		24.0	22.0	22.5	22.0	24.0	N		
23	2.20		24.5	22.0	25.5	23.5	24.5	W		
24										
25			24.5	22.0	25.5	25.0	24.5	W		
26	14.60		25.0	22.0	23.5	23.0	24.0	W		
27	0.00		25.0	21.0	26.5	25.5	27.5	N		
28	4.20	2.00	28.0	21.0	27.5	24.5	29.0	N		
29	2.60		23.0	21.0	23.0	22.0	25.0	N		
30	2.60		23.0	21.0	23.0	22.0	25.0	N		
Total	155.70									
Mean		3.3	25.8	21.2	24.5	23.3	25.7			

	CLIMATOLOGICAL DATA								
Nan	ne of station	: Thankamani		r: 2009		Month	: October		
			Temperature in ⁰ C						
Date	Rainfall in mm	Evaporation in mm	Max.	Min.	Dry	Wet	Ordinary		
1	NA	NA	NA	NA	NA	NA	NA		
2	NA	NA	NA	NA	NA	NA	NA		
3	NA	NA	NA	NA	NA	NA	NA		
4	NA	NA	NA	NA	NA	NA	NA		
5	NA	NA	NA	NA	NA	NA	NA		
6	NA	NA	NA	NA	NA	NA	NA		
7	NA	NA	NA	NA	NA	NA	NA		
8	NA	NA	NA	NA	NA	NA	NA		
9	NA	NA	NA	NA	NA	NA	NA		
10	NA	NA	NA	NA	NA	NA	NA		
11	NA	NA	NA	NA	NA	NA	NA		
12	NA	NA	NA	NA	NA	NA	NA		
13	NA	NA	NA	NA	NA	NA	NA		
14	NA	NA	NA	NA	NA	NA	NA		
15	NA	NA	NA	NA	NA	NA	NA		
16	35.00	4.10	25.0	22.0	24.5	21.0	26.0		
17	0.20	0.20	27.0	21.0	24.0	21.0	24.0		
18	0.40	1.20	25.0	21.0	26.0	22.0	26.0		
19	0.00	2.00	26.0	22.0	23.0	20.0	25.0		
20	0.20	3.70	24.0	21.0	24.0	20.0	24.0		
21	10.60	6.60	26.0	21.0	24.0	21.0	24.0		
22	0.20	3.30	25.0	21.0	24.0	20.0	25.0		
23	0.40	4.40	27.0	22.0	23.0	20.0	24.0		
24	0.00	3.00	24.0	22.0	24.0	21.0	24.0		
25	0.20	4.20	24.0	22.0	24.0	22.0	25.0		
26	0.40	4.40	25.0	21.0	23.0	20.0	25.0		
27	0.00	2.00	24.0	21.0	23.0	20.0	24.0		
28	15.00	1.00	24.0	22.0	23.0	20.0	24.0		
29	21.20	NA	24.0	21.0	22.0	20.0	24.0		
30	18.40	0.40	25.0	21.0	24.0	21.0	25.0		
31	3.40	3.40	26.0	21.0	24.0	21.0	25.0		
Total	105.60								
Mean		2.93	25.1	21.4	23.7	20.6	24.6		

		CLIMATOL	.OGICA	L DAT	Ά		
Name of	station: Tha	ankamani	Year: 20	009	Month	ı: Nove	ember
				Т	empera	ature ir	ı ⁰C
	Rainfall	Evaporation					
Date	in mm	in mm	Max.	Min.	Dry	Wet	Ordinary
1	23.00	1.00	25.0	21.0	26.0	22.0	26.0
2	5.00	1.00	26.0	22.0	24.0	21.0	26.0
3	0.00	2.00	26.0	21.0	24.0	21.0	26.0
4	0.00	6.00	26.0	22.0	23.0	20.0	24.0
5	1.20	1.50	25.0	21.0	24.0	21.0	25.0
6	0.00	4.00	24.0	22.0	23.0	20.0	24.0
7	38.20	4.20	26.0	22.0	24.0	22.0	26.0
8	0.00	3.00	26.0	22.0	23.0	20.0	24.0
9	8.00	NA	25.0	22.0	23.0	21.0	25.0
10	12.00	NA	23.0	22.0	24.0	21.0	24.0
11	16.00	NA	25.0	22.0	23.0	21.0	24.0
12	0.00	6.00	25.0	21.0	24.0	21.0	25.0
13	0.60	2.60	26.0	22.0	25.0	21.0	26.0
14	0.00	0.40	25.0	22.0	25.0	22.0	25.0
15	0.20	4.20	26.0	22.0	24.0	21.0	26.0
16	0.00	2.00	25.0	21.0	25.0	22.0	23.0
17	0.20	2.20	25.0	21.0	26.0	22.0	26.0
18	0.00	1.00	24.0	20.0	24.0	21.0	23.0
19	0.20	3.20	22.0	21.0	23.0	20.0	21.0
20	0.20	2.20	23.0	22.0	NA	NA	22.0
21	0.00	3.00	26.0	21.0	NA	NA	25.0
22	0.20	2.20	24.0	20.0	24.0	21.0	24.0
23	0.60	6.60	26.0	22.0	21.0	20.0	26.0
24	0.10	3.00	22.0	21.0	NA	NA	25.0
25	0.20	4.20	26.0	20.0	24.0	23.0	26.0
26	0.20	6.20	22.0	22.0	NA	NA	21.0
27	2.20	6.20	26.0	21.0	24.0	21.0	26.0
28	0.00	4.00	26.0	22.0	26.0	22.0	26.0
29	0.00	6.00	23.0	21.0	25.0	23.0	24.0
30	0.00	1.40	25.0	21.0	27.0	22.0	26.0
31							
Total	108.30						
Mean		3.31	24.8	21.4	24.2	21.2	24.7

	CLIMATOLOGICAL DATA									
Name of	station: Th			r: 2009	12 5/1		/lonth: E	December		
						Temper	ature in	°C		
	Rainfall	Evaporation	on							
Date	in mm	in mm		Max.	Min.	Dry	Wet	Ordinary		
1	0		4	24	22	21	21	23		
2	0		4	25	21	26	22	25		
3	0		2	23	22	23	21	24		
4	0		3	23	22	25	23	22		
5	0		3	26	20	23	22	21		
6	0		2	22	22	26	23	24		
7	0		6	23	21	26	22	22		
8	0		4	22	21	25	22	26		
9	0		3	26	23	26	21	24		
10	0		4	22	21			22		
11	0		6	21	20	26	24	26		
12	0		6	28	22	25	23	26		
13	0		4	25	22	24	22	24		
14	0		3	22	21	26	21	22		
15	0		3	21	20			21		
16	0		4	22	21			24		
17	0		2	23	20	26	22	21		
18	0		6	24	22	23	21	22		
19	0		6	22	22	24	21	26		
20	0		4	23	22			28		
21	0		2	24	21	23	20	27		
22	0		2	21	20			22		
23	0		3	26	22	25	21	25		
24	0		4	23	20	26	23	22		
25	0		3	23	21	23	22	21		
26	0		3	26	20	21	21	24		
27	0		4			24	23	25		
28	0		3			21	20	24		
29	0		2	22	20			23		
30	0		4	25	21	24	23	26		
31	0		3			21	20	24		
Total	0.00									
Mean			3.61	23.46	21.14	24.12	21.76	23.74		

Data on Infiltration test conducted at Idinjamala on 26-04-07

	i	
Time		
from		Infiltration
Start in	Δt	depth in
minutes	hours	cm
0		0
2	0.0333	2
6	0.0666	2
10	0.0666	2
20	0.1667	3.5
30	0.1667	3.2
60	0.5	9.3
90	0.5	7.8
120	0.5	6.5
150	0.5	5.7
180	0.5	5
210	0.5	4
240	0.5	4

MOISTURE CONTENT OF SOIL SAMPLES COLLECTED FROM ERATTAYAR WATERSHED APRIL 2007 (25th & 26th)

Sl.No.	Location	Sampli ng Depth from surface (m)	Conta iner No	Weig ht of contai ner+li d w1 gm	Wet weight of contain er+lid+ soil sample w2 gm	Dry weight of container +lid+soil sample w3 gm	Moisture content (%) (w2- w3)/(w3- w1)
1		0.30	14	47.01	110.62	98.68	23.11
2	Erattayar	0.60	54	43.84	120.92	107.93	20.27
3		0.90	176	46.29	134.42	116.45	25.61
4		0.30	190	43.58	114.58	102.74	20.01
5	Nalumukku	0.60	80	41.12	113.31	101.37	19.82
6		0.90	166	47.74	153.11	134.16	21.93
7		0.30	3	46.91	87.20	81.30	17.16
8	Thankamony	0.60	24	49.22	146.39	126.65	25.49
9		0.90	132	47.96	77.23	71.63	23.66
10		0.30	10	44.4	118.24	103.52	24.90
11	Kamakshy	0.60	20	46.34	141.24	119.15	30.34
12		0.90	4	42.19	99.40	86.04	30.47
13		0.30	180	45.81	134.04	118.36	21.61
14	8th mile	0.60	152	45.75	128.88	113.50	22.70
15		0.90	139	46.38	135.51	117.24	25.78
16		0.30	70	44.43	106.64	91.99	30.80
17	Vazhavara	0.60	44	50.86	121.36	106.87	25.87
18		0.90	186	46.01	105.25	91.16	31.21
19		0.30	174	39.55	125.14	110.40	20.80
20	Idinjamala	0.60	135	46.83	131.58	116.81	21.11
21		0.90	101	43.66	144.19	130.34	15.98
22	Infiltration sample from Idinjamala		157	43.32	114.58	101.08	23.37

Report on Soil Test conducted for the samples collected from the Erattayar Watershed

Soil samples from ten locations in the Erattayar watershed were collected from 60 cm depth and the analysis carried out during May 2008. Details of the test conducted are given below.

Permeability Test

The permeability test was conducted in the soil laboratory of Ground Water Divison of CWRDM. The permeability values computed are given in Table A.

Table A Permeability and Drainage Characteristics of Soils

Sl.No.	Location Name	Permeability, K (cm/	(sec)	Drainage
1	Nalumukku	1.3 x 10 ⁻²	Good	
2	Parakkadavu	1.2 x 10 ⁻²	Good	
3	Kamakshy	1.7 x 10 ⁻²	Good	
4	Idinjamala	1.6 x 10 ⁻²	Good	
5	IdinjamalaThodu	8.0×10^{-3}	Good	
6	Pathammile	1.6 x 10 ⁻²	Good	
7	Eighth mile	1.4 x 10 ⁻²	Good	
8	Vazhavara	1.4 x 10 ⁻²	Good	
9	Thankamany Yard	8.0×10^{-3}	Good	
10	Thankamany	9.0×10^{-3}	Good	

Details Of Well Observation

SI No	Station	December 2007 (28) m	January 2008 (30) m	February 2008 (26 & 27) m	March 2008 (25, 26,27 &28)
1	Thankamony	2.13	2.37	2.51	2.30
2	Kamakshy	2.15	2.74	2.85	2.20
3	Vazhavara	2.08	2.14	2.14	2.13
4	Santhigram	7.15	10.3	10.69	9.00

SI No	Station	Latitude	Longitude
1	Thankamony		
2	Kamakshy		
3	Vazhavara		
4	Santhigram		

Thankamany

MONTH	DEPTH	DISCHARGE (m³/s)		
Nov-06	0.19	0.047		
Dec-08	0.12	0.018		
Jan-07	0.1	0.009		
Feb-07	0	0		
Apr-07	0.14	0.012		
Jul-07	0.4	0.1966		
Aug-07	0.17	0.071		
Sep-07	0.2	0.0982		
Oct-07	0.11	0.0505		
Nov-07	0.205	0.1246		
Dec-07	0.06	0.0143		
Jan-08	0.04	0.008		
Feb-08	0	0		
Mar-08	0.02	0.0012		
Apr-08	0.04	0.0027		
May-08	0	0		
Jun-08	0.22	0.15815		
Jul-08	0.29	0.1688		
Aug-08	0.23	0.06625		
Sep-08	0.18	0.0983		
Oct-08	0.16	0.0149		
Nov-08	0.16	0.0295		
Dec-08	0.1	0.0205		
Jan-09	0.11	0.0163		
Feb-09	0.04	0.0012		
Mar-09	0.06	0.006		
Apr-09	0	0		
May-09	0	0		
Jun-09	0.3	0.0861025		
Jul-09	0.39	0.1825		
Aug-09	0.26	0.5027		
Sep-09	0.46 0.190			
Oct-09	0.28	0.1181		

Parakkadavu

		T		
MONTH	DEPTH	DISCHARGE (m³/s)		
Nov-06	0.08	0.425		
Dec-06	0.09	0.107		
Jan-07	0.05	0.0345		
Feb-07	0	0		
Apr-07	0.15	0.137		
Jul-07	0.77	1.9814		
Aug-07	0.44	1.0583		
Sep-07	0.7	2.0463		
Oct-07	0.4	1.082		
Nov-07	0.44	1.178		
Dec-07	0.2	0.256		
Jan-08	0.1	0.1186		
Feb-07	0.16	0.0023		
Mar-08	0.14	0.1153		
Apr-08	0.02	0.0064		
May-08	0	0		
Jun-08	0.49	1.0771		
Jul-08	0.61	1.14335 1.2699		
Aug-08	0.625			
Sep-08	0.57	0.9234		
Oct-08	0.4	0.4146		
Nov-08	0.12	0.3039		
Dec-08	0.16	0.1344		
Jan-09	0.13	0.0233		
Feb-09	0	0		
Mar-09	0.04	0.0017		
Apr-09	0	0		
May-09	0	0		
Jun-09	0.34	0.4083		
Jul-09	0.42	0.7524		
Aug-09	0.45	0.5415		
Sep-09	0.56	0.9856		
Oct-09	0.5	1.0866		

Kamakshy

DISCHARGE MONTH DEPTH (m^3/s) Nov-06 0.2 0.198 0.07 Dec-06 0.15 Jan-07 0.06 0.024 Feb-07 0.015 0.001 0.115 Apr-07 0.072 Jul-07 0.44 1.1645 0.26 Aug-07 0.631 Sep-07 0.4 0.9867 Oct-07 0.24 0.4539 0.8003625 Nov-07 0.28 Dec-07 0.1 0.1044 0.04689 Jan-08 0.1 Feb-07 0.06 0.0077 Mar-08 0.1 0.024 0.07 0.0324 Apr-08 May-08 0 0.0994 Jun-08 0.19 Jul-08 0.45 1.0062 Aug-08 0.3 0.4519 Sep-08 0.26 0.1179 Oct-08 0.22 0.2634 0.1118 Nov-08 0.15 Dec-08 0.08 0.0317 Jan-09 0.055 0.0149 Feb-09 0 Mar-09 0.06 0.004 Apr-09 0 0 May-09 0 0 Jun-09 0.28 0.3777 0.43 Jul-09 0.8854 Aug-09 0.29 0.5758 Sep-09 0.46 0.8121 Oct-09 0.29 0.7323

Idinjamala

MONTH	DEPTH	DISCHARGE		
		(m³/s)		
Nov-06	0.1	0.308		
Dec-06	0.18	0.12		
Jan-07	0.14	0.0441		
Feb-07	0.06	0.005		
Apr-07	0.06	0.155		
Jul-07	0.28	2.214		
Aug-07	0.22	1.311		
Sep-07	0.28	2.03		
Oct-07	0.2	0.9953		
Nov-07	0.23	2.1659		
Dec-07	0.08	0.1419		
Jan-08	0.04	0.056		
Feb-07	0.11	0.0113		
Mar-08	0.06	0.0294		
Apr-08	0.04	0.0068		
May-08	0	0		
Jun-08	0.125	0.2413		
Jul-08	0.195	0.8075		
Aug-08	0.225	0.945875		
Sep-08	0.19	1.0701		
Oct-08	0.14	0.2559		
Nov-08	0.1	0.2934		
Dec-08	0.05	0.0817		
Jan-09	0.03	0.0591		
Feb-09	0	0		
Mar-09	0	0		
Apr-09	0.04	0.0739		
May-09	0	0		
Jun-09	0.19	0.181		
Jul-09	0.27	0.4037		
Aug-09	0.17	0.291		
Sep-09	0.17	0.2684		
Oct-09	0.2	0.4129		

Nalumukku

Naiumukku					
MONTH	DEPTH	DISCHARGE (m³/s)			
Nov-06	0.9	0.7			
Dec-06	0.52	0.6778			
Jan-07	0.36	0.1775			
Feb-07	0	0			
Apr-07	0	0			
Jul-07	0.38	4.367			
Aug-07	1.42	2.377			
Sep-07	0.70	4.497			
Oct-07	0.65	4.03			
Nov-07	0.52	2.34			
Dec-07	0.05	0.293			
Jan-08	0.3	0.128			
Feb-08	0.09	0.044			
Mar-08	0.1	0.134			
Apr-08	Apr-08 0.04	0.217 0.025			
May-08	0.02				
Jun-08	0.34	0.3480			
Jul-08	0.62	1.941			
Aug-08	0.78	1.658			
Sep-08	0.655	1.5540			
Oct-08	0.63	1.2345			
Nov-08	0.32	0.5560			
Dec-08	0.38	0.8810			
Jan-09	0.36	0.2075			
Feb-09	0.33	0.481			
Mar-09	0.38	0.2290			
Apr-09	0.28	0.272			
May-09	0	0.0000			
Jun-09	0.42	0.7539			
Jul-09	0.92	4.2617			
Aug-09	0.66	2.4542			
Sep-09	0.78	3.2415			
Oct-09	0.7	3.7025			

8th mile

	MONTH	DEPTH	DISCHARGE (m³/s)		
	Nov-06	0.1	0.047		
	Dec-06	0.13	0.05		
	Jan-07	0.21	0.0161		
	Feb-07	0.1	0.005		
	Apr-07	0.04	0.014		
	Jul-07	0.1	0.412		
	Aug-07	0.12	0.342		
	Sep-07	0.14	0.4175		
	Oct-07	0.09	0.1306		
	Nov-07	0.11	0.23765		
	Dec-07	0.04	0.0363		
	Jan-08	0.02	0.00285		
	Feb-07	0.02	0.0023		
	Mar-08	0.02	0.007		
	Apr-08	0.03	0.0049		
	May-08	0	0		
	Jun-08	0.13	0.3791		
	Jul-08	0.04	0.0529		
	Aug-08	0.1	0.2419		
	Sep-08	0.11	0.3133		
	Oct-08	0.16	0.0149		
	Nov-08	0.016	0.0295		
Dec-08		0.1	0.0205		
Jan-09		0.04	0.0968		
Feb-09		0	0		
Mar-09		0	C		
	Apr-09	0	0		
	May-09	0	0		
	Jun-09	0.1	0.205		
	Jul-09	0.05	0.0842		
	Aug-09	0.1	0.16425		
	Sep-09	0.02	0.0305		
Oct-09		0.1	0.2002		

Vazhavara

	V uznu	uiu		
MONTH	DEPTH	DISCHARGE (m³/s)		
Nov-06	0.32	0.153		
Dec-06	0.23	0.05		
Jan-07	0.27	0.029		
Feb-07	0.11	0.032		
Apr-07	0.18	0.054		
Jul-07	0.215	0.6764		
Aug-07	0.15	0.3841		
Sep-07	0.17	0.4485		
Oct-07	0.12	0.1615		
Nov-07	0.175	0.30915		
Dec-07	0.14	0.0787		
Jan-08	0.12	0.0453		
Feb-07	0.08	0.01825		
Mar-08	0.1	0.032		
Apr-08	0.08	0.03102		
May-08	0	0		
Jun-08	0.13	0.0823		
Jul-08	0.2533	0.6479		
Aug-08	0.205	0.30155		
Sep-08	0.19	0.37655		
Oct-08	0.23	0.38995		
Nov-08	0.22	0.1754		
Dec-08	0.21	0.0703		
Jan-09	0.18	0.037		
Feb-09	0.16	0.0321		
Mar-09	0.12	0.034		
Apr-09	0	0		
May-09	0	0		
Jun-09	0.18	0.17291		
Jul-09	0.36	0.6336		
Aug-09	0.24	0.24033		
Sep-09	0.24	0.2184		
Oct-09	0.28	0.3543		

Monthly average flow in m³/sec

Month	Thankamani	Kamakshy	8thmile	Parakkadavu	Vazhavara	Idinjamala
Jan-07	0.000	0.024	0.000	0.000	0.000	0.000
Feb-07	0.000	0.001	0.000	0.000	0.000	0.000
Mar-07	0.000	0	0.000	0.000	0.000	0.000
Apr-07	0.012	0.072	0.042	0.000	0.117	0.076
May-07	0.000	0.0418	0.000	0.032	0.070	0.055
Jun-07	0.045	0.5001	0.101	0.126	0.167	0.439
Jul-07	0.166	1.645	0.246	2.518	0.682	0.751
Aug-07	0.071	0.831	0.198	0.985	0.271	0.500
Sep-07	0.098	0.9867	0.221	1.210	0.361	0.540
Oct-07	0.051	0.5539	0.150	1.001	0.347	0.515
Nov-07	0.010	0.4003	0.229	0.721	0.350	0.412
Dec-07	0.014	0.1044	0.113	0.300	0.181	0.221
Jan-08	0.008	0.04689	0.021	0.140	0.119	0.079
Feb-08	0.000	0.0077	0.012	0.079	0.086	0.054
Mar-08	0.001	0.024	0.010	0.118	0.082	0.070
Apr-08	0.003	0.0324	0.005	0.037	0.052	0.052
May-08	0.000	0	0.004	0.037	0.016	0.020
Jun-08	0.158	0.0994	0.088	0.277	0.058	0.127
Jul-08	0.169	1.0062	0.163	1.429	0.340	0.351
Aug-08	0.066	0.4519	0.194	1.111	0.432	0.616
Sep-08	0.033	0.5179	0.209	1.448	0.359	0.630
Oct-08		0.334	0.037	0.578	0.299	0.374
Nov-08		0.3	0.026	0.348	0.330	0.345
Dec-08		0.0317	0.014	0.300	0.236	0.128
Jan-09		0.0149	0.004	0.003	0.023	0.060
Feb-09		0	0.000	0.000	0.009	0.008
Mar-09		0.004	0.001	0.000	0.000	0.000
Apr-09		0.0201	0.012	0.009	0.000	0.005
May-09		0.0177	0.005	0.000	0.000	0.003
Jun-09		0.2778	0.061	0.091	0.174	0.068
Jul-09		0.7854	0.245	0.980	0.459	0.366
Aug-09		0.568	0.147	0.779	0.307	0.351
Sep-09		0.67	0.101	1.157	0.335	0.427
Oct-09		0.55	0.150	0.780	0.332	0.353
Nov-09		0.36	0.041	0.661	0.366	0.345
Dec-09		0.15	0.020	0.105	0.295	0.105