## **HEC-HMS Exercise**

\*\*\*\*\*

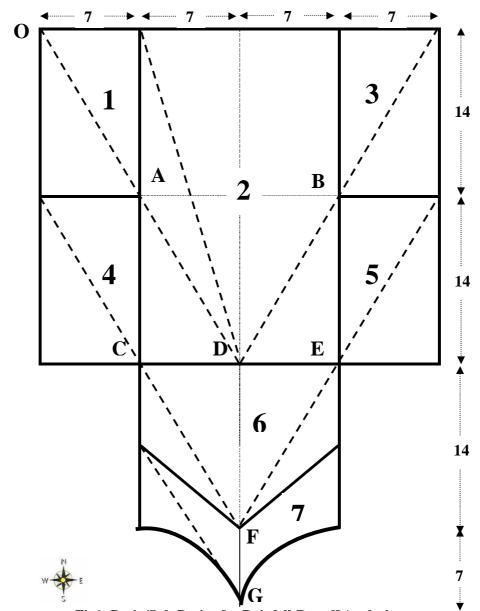



Fig1: Basin/Sub-Basins for Rainfall-Runoff Analysis

Objective: To determine hydrological Response of the given basin for 500 years return period. This analysis consists of following two parts:

- 1. To estimate the IDF-curve & Design storm applying suggested methodology.
- 2. To determine the hydrological response of the design storm over the basin using software tool HEC-HMS and to reduce the peak flow by adjusting elevation & length of the spillway.

Table 1: Rainfall Data (Maximum rainfall in 24 hrs. extreme events of the years)

| Year | Rainfall mm | Year | Rainfall mm | Year | Rainfall mm |
|------|-------------|------|-------------|------|-------------|
|      |             |      |             |      |             |
| 1975 | 124         | 1985 | 54.4        | 1995 | 61.9        |
| 1976 | 66.4        | 1986 | 63.6        | 1996 | 97.5        |
| 1977 | 52.1        | 1987 | 52.5        | 1997 | 82.4        |
| 1978 | 40.1        | 1988 | 29.7        | 1998 | 55.5        |
| 1979 | 76.5        | 1989 | 112.6       | 1999 | 63.6        |
| 1980 | 73.4        | 1990 | 42.8        | 2000 | 31.3        |
| 1981 | 47.4        | 1991 | 46.6        | 2001 | 63.5        |
| 1982 | 82.2        | 1992 | 48.3        | 2002 | 87.1        |
| 1983 | 34.2        | 1993 | 230.1       | 2003 | 77.7        |
| 1984 | 48.5        | 1994 | 67.2        | 2004 | 60.1        |

**Table 2: IDF Curve Data** 

| Duration in hrs | Multiplying factor | Intensity<br>mm/hour                               | Cumulative rainfall. mm                                       | Rainfall. mm  | Alt. Block |
|-----------------|--------------------|----------------------------------------------------|---------------------------------------------------------------|---------------|------------|
| 0.5             |                    |                                                    |                                                               |               |            |
| 1.0             | T                  | = 500 years                                        | l                                                             | I             | I          |
| 1.5             | 1                  | = 500 years                                        |                                                               |               |            |
| 2.0             |                    | ( ( T                                              | ))                                                            |               |            |
| 2.5             | У                  | $r = -\ln\left(\ln\left(\frac{T}{T}\right)\right)$ | $-\frac{1}{1}$ $y: f(T)$                                      |               |            |
| 3.0             |                    | (I -                                               | 1))                                                           |               |            |
| 3.5             |                    | . 20                                               | 0.526                                                         | 1 110         |            |
| 4.0             | Λ                  | V = 30 x                                           | $x_n = 0.536$                                                 | $s_n = 1.112$ |            |
| 4.5             | E                  | C                                                  |                                                               |               |            |
| 5.0             | F                  | requency factor                                    |                                                               |               |            |
| 5.5             |                    | v v                                                |                                                               |               |            |
| 6.0             | k                  | $s = \frac{y - x_n}{s_n} k: f(x)$                  | T,N)                                                          |               |            |
| 6.5             |                    | $S_n$                                              |                                                               |               |            |
| 7.0             | _                  |                                                    |                                                               |               |            |
| 7.5             | F                  | $P_{24} = \overline{x} - k\sigma$                  |                                                               |               |            |
| 8.0             | ***                |                                                    | a a me                                                        |               |            |
| 8.5             | E                  | xpression of Syl                                   | nthetic IDF                                                   |               |            |
| 9.0             |                    |                                                    | $(28^{0.1}-D^{0.1})$                                          |               |            |
| 9.5             | 7                  | $(D,T) = \frac{P_{24}}{24} R$                      | $\mathbf{E}^{\left(\frac{28^{\circ}-D}{28^{\circ}-1}\right)}$ |               |            |
| 10.0            | 1                  | $(D,T) = \frac{1}{24}K$                            | r ·                                                           |               |            |
| 10.5            | I:                 | Intensity (mm/h                                    | !)                                                            |               |            |
| 11.0            |                    | <sub>24</sub> : 24 hours rain                      | ıfall                                                         |               |            |
| 11.5            |                    | : Duration (h)                                     | 10                                                            |               |            |
| 12.0            | R                  | F: Regional Fac                                    | ctor = 10                                                     |               |            |
| 12.5            |                    |                                                    |                                                               |               |            |
| 13.0            |                    |                                                    |                                                               |               |            |

Table 3: Spillway elevation Vs Reservoir Area

| Elevation (M) | Area<br>(M²) | $Tc = 0.3 \left(\frac{L}{I^{0.25}}\right)^{0.76}$ |
|---------------|--------------|---------------------------------------------------|
| 0             | 0            | $(J^{0.23})$                                      |
| 30            | 250          |                                                   |
| 50            | 500          | T 0.25T 60                                        |
| 70            | 700          | $T_{lag} = 0.35Tc \cdot 60$                       |
| 80            | 900          |                                                   |
| 84            | 1800         | Ia = 0.2S                                         |
| 88            | 3600         |                                                   |
| 92            | 7200         | 25.400                                            |
| 96            | 14400        | $S = \frac{25400}{100} - 254$                     |
| 100           | 28800        | CN                                                |

Table 4: Sub-basins

| sub-<br>basin | Length<br>(KM) | slope | Area<br>(KM²) | T <sub>c</sub><br>(Hrs) | T <sub>lag</sub><br>(Min) | S<br>(mm) | l <sub>a</sub><br>(mm) | CN |
|---------------|----------------|-------|---------------|-------------------------|---------------------------|-----------|------------------------|----|
| 1             |                | 0.03  |               |                         |                           |           |                        | 66 |
| 2             |                | 0.02  |               |                         |                           |           |                        | 71 |
| 3             |                | 0.03  |               |                         |                           |           |                        | 66 |
| 4             |                | 0.02  |               |                         |                           |           |                        | 71 |
| 5             |                | 0.02  |               |                         |                           |           |                        | 71 |
| 6             |                | 0.01  |               |                         |                           |           |                        | 69 |
| 7             |                | 0.01  |               |                         |                           |           |                        | 69 |

Muskingum Equation: S = K[x I + (1-x) Q]

Where, S= storage, I=Inflow, Q=Outflow discharge, K= storage time constant, x= weighting factor.

K = 0.6Tc

Table 5: Reaches (Routing)

| Reach | Length<br>(KM) | Slope | T <sub>c</sub><br>(Hrs) | Musk. K<br>(Hrs) | Musk. x |
|-------|----------------|-------|-------------------------|------------------|---------|
| AD    |                |       |                         |                  | 0.25    |
| BD    |                |       |                         |                  | 0.25    |
| DF    |                |       |                         |                  | 0.22    |
| CF    |                |       |                         |                  | 0.22    |
| EF    |                |       |                         |                  | 0.22    |
| FG    |                |       |                         |                  | 0.20    |

## **Gumbel Extreme Value Distribution**

| N<br>(number of<br>years) | $y_n$     | $\sigma_n$      | N    | $y_n$  | $\sigma_n$ |
|---------------------------|-----------|-----------------|------|--------|------------|
| 10                        | 0.4952    | 0.9497          | 65   | 0.5536 | 1.1803     |
| 15                        | 0.5128    | 1.0206          | 70   | 0.5548 | 1,1854     |
| 20                        | 0.5236    | 1.0620          | 75   | 0.5559 | 1.1898     |
| 25                        | 0.5309    | 1.0915          | 80   | 0.5569 | 1.1938     |
| 30                        | 0.5362    | 1.1124          | 85   | 0.5578 | 1.1973     |
| 35                        | 0.5403    | 1.1285          | 90   | 0.5589 | 1.2007     |
| 40                        | 0.5436    | 1.1413          | 95   | 0.5593 | 1.2038     |
| 45                        | 0.5463    | 1.1518          | 100  | 0.5600 | 1.2065     |
| 50                        | 0.5465    | 1.1607          | 200  | 0.5672 | 1.2359     |
| 55                        | 0.5504    | 1.1681          | 500  | 0.5724 | 1.2588     |
| SCS Curve                 | Number Es | <u>timation</u> | 1000 | 0.5745 | 1.2685     |

## **SCS Curve Number Groups**

| Hydrologic Soil<br>Group | Soil Group Characteristics                                                                                                                                                                                                                                  |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A                        | Soils having high infiltration rates, even when thoroughly wetted and consisting chiefly of deep, well to excessively-drained sands or gravels. These soils have a high rate of water transmission.                                                         |
| В                        | Soils having moderate infiltration rates when thoroughly wetted and consisting chiefly of moderately deep to deep, moderately fine to moderately coarse textures. These soils have a moderate rate of water transmission.                                   |
| С                        | Soils having slow infiltration rates when thoroughly wetted and consisting chiefly of soils with a layer that impedes downward movement of water, or soils with moderately fine to fine texture. These soils have a slow rate of water transmission.        |
| D                        | Soils having very slow infiltration rates when thoroughly wetted and consisting chiefly of clay soils with a high swelling potential, soils with a permanent high water table, soils with a claypan or clay layer at or near the surface, and shallow soils |

**Table 5.5** Antecedent Moisture Conditions (AMC) for Determining the Value of CN

| AMC Type  | Total Rain in P                | revious 5 days                 |
|-----------|--------------------------------|--------------------------------|
| in ight   | Dormant Season                 | Growing Season                 |
| Ī         | Less than 13 mm                | Less than 36 mm<br>36 to 53 mm |
| II<br>TII | 13 to 28 mm<br>More than 28 mm | More than 53 mm                |

LAND USE The variation of CN under AMC-II, called  $CN_{\rm II}$ , for various land use conditions commonly found in practice are shown in Table 5.6(a, b and c).

**Table 5.6(a)** Runoff Curve Numbers  $[CN_{ij}]$  for Hydrologic Soil Cover Complexes [Under AMC-II Conditions]

| Land Use           | Cov                   | er                   | Ну   | drologic | soil grou | p   |
|--------------------|-----------------------|----------------------|------|----------|-----------|-----|
| Land Osc _         | Treatment or practice | Hydrologic condition | Ā    | В        | С         | D   |
| Cultivated         | Straight row          |                      | 76   | 86       | 90        | 93  |
| Cultivated         | Contoured             | Poor                 | 70   | 79       | 84        | 88  |
| Cultivatou         | 0011102111            | Good                 | 65   | 75       | 82        | 86  |
| Cultivated         | Contoured &           | Poor                 | 66   | 74       | 80        | 82  |
| Cumvaicu           | Terraced              | Good                 | 62   | 71       | 77        | 81  |
| Cultivated         | Bunded                | Poor                 | 67   | 75       | 81        | 83  |
| Cultivated         | Dunaca                | Good                 | 59   | 69       | 76        | 79  |
| Cultivated         | Paddy                 |                      | 95   | 95       | 95        | 95  |
| Orchards           | With understory       | cover                | 39   | 53       | 67        | 71  |
| Orchards           | Without understo      |                      | 41   | 55       | 69        | 73  |
| Forest             | Dense                 | ,,, 50.51            | 26   | 40       | 58        | 61. |
| rolesi             | Open                  |                      | 28   | 44       | 60        | 64  |
|                    | Scrub                 |                      | 33   | 47       | 64        | 67  |
| Pasture            | Poor                  |                      | 68   | 79       | 86        | 89  |
| rasture            | Fair                  |                      | 49   | 69       | 79        | 84  |
|                    | Good                  |                      | 39   | 61       | 74        | 80  |
| Wasteland          | Good                  |                      | 71   | 80       | 85        | 88  |
| Roads (dirt)       |                       |                      | . 73 | 83       | 88        | 90  |
| Hard surface areas |                       |                      | 77   | 86       | 91        | 93  |

**Table 5.6(b)**  $CN_n$  Values for Sugarcane

[Source: Ref.7]

| Cover and treatment          | Hydrologic soil group |    |    |    |  |  |
|------------------------------|-----------------------|----|----|----|--|--|
|                              | A                     | В  | С  | D  |  |  |
| Limited cover, Straight Row  | 67                    | 78 | 85 | 89 |  |  |
| Partial cover, Straight row  | 49                    | 69 | 79 | 84 |  |  |
| Complete cover, Straight row | 39                    | 61 | 74 | 80 |  |  |
| Limited cover, Contoured     | 65                    | 75 | 82 | 86 |  |  |
| Partial cover, Contoured     | 25                    | 59 | 45 | 83 |  |  |
| Complete cover, Contoured    | 6                     | 35 | 70 | 79 |  |  |

**Table 5.6(c)** *CN*<sub>II</sub> Values for Suburban and Urban Land Uses (Ref. 3)

| Cover and treatment                                   | Hydrologic soil group |    |    |    |  |
|-------------------------------------------------------|-----------------------|----|----|----|--|
|                                                       | A                     | В  | C  | D  |  |
| Open spaces, lawns, parks etc                         |                       |    |    |    |  |
| (i) In good condition, grass cover in more than       | 39                    | 61 | 74 | 80 |  |
| 75% area                                              |                       |    |    |    |  |
| (ii) In fair condition, grass cover on 50 to 75% area | 49                    | 69 | 79 | 84 |  |
| Commercial and business areas (85% impervious)        | 89                    | 92 | 94 | 95 |  |
| Industrial Districts (72% impervious)                 | 81                    | 88 | 91 | 93 |  |
| Residential, average 65% impervious                   | 77                    | 85 | 90 | 92 |  |
| Paved parking lots, paved roads with curbs, roofs,    | 98                    | 98 | 98 | 98 |  |
| driveways, etc                                        |                       |    |    |    |  |
| Streets and roads                                     |                       |    |    |    |  |
| Gravel                                                | 76                    | 85 | 89 | 91 |  |
| Dirt                                                  | 72                    | 82 | 87 | 89 |  |