Training Programme for Officials of Royal Govt of Bhutan

Concepts of Remote Sensing (RS) and

Principles of Remote Sensing

G - Application

Electromagnetic Radiation

- In 1886, Maxwell found that it might be possible to combine electric and magnetic fields, forming self sustaining waves;
- In 1888 Hertz further investigated the properties of Electromagnetic waves.

Wavelength & Frequency

- Wavelength is the length of one wave cycle, which can be measured as the distance between successive wave crest
- Frequency is number of cycle of waves passing a fixed time per unit of time
- λ = wavelength (m)
 ν= frequency (cycles per second, Hz)
 c = speed of light (3x108 m/s)

The Electromagnetic Spectrum

The Electromagnetic Spectrum

Interaction with the Atmosphere

Radiation – Target Interactions

Target Interactions-Reflections

Sensors

Passive Sensors

Active Sensors

What is GIS?

- GIS integrates hardware, software, and data for capturing, managing, analyzing, and displaying all forms of geographically referenced information
- GIS allows to view, understand, question, interpret, and visualize data in many ways that reveal relationships, patterns, and trends in the form of maps, globes, reports, and charts.

Component of GIS

GIS – History of Development

- 1854 (John Show): Cholera Outbreak in London;
- Early 20th Century: Photozincography for maps
 - Concept of layers;
 - Originally drown on glass plates;
 - Later on thin plastic films;
 - Colour printing introduced;

(Layer concept used in modern GIS)

GIS – History of Development

- 1960s: Development of Computer Hardware;
 - 1960: First operational GIS in Ottawa, Canada
 - Department of Forestry and Rural Development.
 - Developed by Dr. Roger Tomlinson (Father of GIS)
 - Called Canada Geographic Information System (CGIS)
 - Used to store, analyze, and manipulate data collected for the Canada Land Inventory
 - Facilitated planning & management.

GIS – History of Development

- 1965-91: Extensive Research at Harvard Graduate School of Design led to commercial development
- 1980s: Environmental Systems Research Institute (ESRI),
 Computer Aided Resource Information System (CARIS),
 MapInfo, Earth Resource Data Analysis System (ERDAS)
 emerged as commercial vendors of GIS software.
- 1986: Mapping Display and Analysis System (MIDAS), the first desktop GIS product, renamed in 1990 as Mapinfo as Microsoft windows based package.

GIS – Packages

Open Source GIS software

- GRASS GIS Originally developed by the U.S.
 Army Corps of Engineers: a complete GIS.
- ILWIS (Integrated Land and Water Information System) Integrates image, vector and thematic data.
- MapWindow GIS Free desktop application and programming component
- uDig API and source code (Java) available.

GIS – Packages

Commercial GIS software

- ArcGIS, ArcView, ArcSDE, ArcIMS, ArcWeb services and ArcGIS Server by ESRI;
- MapInfo by Pitney Bowes Software

Indigenous GIS Packages

ISROGIS

 Location: Describes position of particular geographic feature on earth surface.

Attribute: Describes characteristics of geographic feature

such as type, name, area, length etc.

Name	FIPS	Pap90	Area	PopDn
Whatcom	53073	128	2170	59
Skagit	53057	80	1765	45
Cialiam	53009	56	1779	32
Snohomish	53061	466	2102	222
Inland	53029	60	231	261
Jefferson	53031	20	1773	11
Kitsap	53035	190	391	485
King	53033	1507	2164	696
Mason	53045	38	904	42
Gray Horber	53027	64	1917	33
Pierce	53053	586	1651	355
Thurston	53067	161	698	231
Pacific	53049	19	945	20
Lowis	53041	59	2479	24

GIS - Data Model

Attributes of Rain25used.txt							
Shape	t rainfalls for site.	Easting	Northing	Alt	Flain (mm)		
Point	999	2411300	5901700	334	2592.200		
Point	211302	2372144	5899615	4	2658.491		
Point	211802	2416286	5898496	198	1833.954		
Point	213810	2410022	5872000	183	2131.642		
Point	214202	2361986	5858663	20	2551.988		
Point	214301	2370172	5860685	12	3234.292		
Point	214710	2405600	5862900	117	2424.000		
Point	215102	2359367	5853050	11	2773.110		
Point	215302	2375764	5855241	143	3394.845		
Point	215401	2379943	5851617	75	3146.148		
Point	215702	2406013	5848356	175	3068.048		
Point	216401	2382989	5835007	116	5119.652		
Point	216503	2392487	5838880	107	3696.638		
Point	216510	2384400	5846800	90	2683.821		
Point	217411	2379300	5826800	126	4308.232		
Point	218910	2416759	5827584	1418	5025.104		
Point	220201	2447921	5906255	380	1826.003		
Point	223101	2442708	5874733	421	2236.851		
Point	224001	2429123	5861627	368	2888.288		

GIS - Data Model

Discrete Space: Lumped models Feature/Vector data structures

Continuous Space: Distributed models

Raster/grid data structures

Line Features: Lines are used to represent the shape and location of geographic objects, too narrow to depict as areas.

(eg. Streams, Rivers, Canals)

Polygon Features: Polygon is used to represent a shape, set of connected, ordered coordinates forming an area (eg. Watersheds, catchments, water bodies tc.)

GIS - Data Model

GIS - Data Model

Vector Data Format

Point, line, polygon, shape files

Raster Data Format

Jpeg, tiff, gif, DEM

A map projection is a systematic transformation of the latitudes and longitudes of locations on the surface of earth into locations on a plane.

Planar representation of actual map features on the curved surface of the earth, all map projections necessarily distort some aspects.

Cylindrical Projections: Meridians are mapped to equally spaced vertical lines and circles of latitude (parallels) are mapped to horizontal lines. Minimum distortion at equatorial region & maximum at poles)

Conic Projections: meridians are mapped to equally spaced lines radiating out from the apex and circles of latitude (parallels) are mapped to circular arcs centered on the apex

Azimuthal Projections: Directions from a central point are preserved and therefore great circles through the central point are represented by straight lines on the map

Metric Properties of Map:

- Area
- Shape
- Direction
- Distance

Preserving direction (Azimuthal), a trait possible only from one or two points to every other point

Preserving **shape** locally (conformal or orthomorphic)

Preserving **area** (equal-area or equivalent or Authalic)

Preserving distance (equidistant), a trait possible only between one or two points and every other point

GIS Coordinate System

GIS Coordinate System

Universal Transverse Mercator (UTM)

GIS Coordinate System

Transverse Mercator Projection

GIS Layers

- GIS allows multiple layers of information to be displayed on a single map (eg. Landuse, soil type, Thiessen polygon).
- One of the main features of contemporary GIS
- Layers facilitates representation of real world.

Overlay Analysis

Superimposing two or more maps registered to common coordinate system, to show relationships between features in the same study area.

Overlay Analysis

Geodatabase

The geodatabase is the common data storage and management framework which combines "geo" (spatial data) with "database" (data repository). Geodatabase associate data management capabilities to leverage spatial

information.

Geodatabase

- Fully Relational Data Base Management System (RDBMS);
- Facilitates Relationships, Query, Report;
- In-built Attribute dataset, feature class;
- Provides flexibility to GIS environment.

GIS Data Collection

Primary Data: Collected directly from the field. Eg. Remote Sensing Data, Surveying Data, GPS, LiDAR.

Secondary Data: Collected from already published sources. Eg. Scanned maps, image, aerial photographs (raster).

GIS Applications

- Environmental assessment
- Forestry and wild life tracking
- Waste land development
- Water resources management
- Land use and thematic mapping
- Facility management
- Urban and town planning
- Defence
- Land Information Systems
- Business and retails

Digital Elevation Model (DEM): is a digital model or 3D representation of a terrain's surface — created from terrain elevation data.

Fill Sinks: Sinks (and peaks) are often errors due to the resolution of the data or rounding of elevations to the nearest integer value.

GIS Watershed Calculations

Fill Sinks: Sinks should be filled to ensure proper delineation of basins and streams. If the sinks are not filled, a derived drainage network may discontinuous. filled sink

Flow Direction:

Flow direction tool permits to determine the flow behaviour depending on the height of the adjacent cells of a grid.

Flow Accumulation:

Calculates accumulated flow as the accumulated weight of all cells flowing into each downslope cell in the output raster.

Stream Definition: This generates a network with the main rivers. It assigns a value of 1 to the cells that contain a flow accumulation higher than a given threshold, while null value are provided to the cells with a lower accumulation flow.

Stream Segmentation:

It creates a grid of stream segments, in such a way that all the cells with the same Grid Code compose one different segment

Drainage Point Location:

This function allows to identify drainage point at the most downstream point in the subcatchments. This point contains the largest value in the flow accumulation grid.

Catchment Grid Delineation:

This function creates subcatchment on the basis of drainage pour point & contributing area.

Subcatchment	Area (SqKM)	Longest path (km)	Mean Slope of the longest flowpath (%)	Lowest point (m asl)	Highest point (m asl)
Tinee	755.45	68.45	3.5%	257	2651
Upper Var	1091.43	83.74	3.2%	107	2805
Vesube	403.14	45.44	5.9%	140	2822
Esteron	459.43	59.96	2.8%	108	1800
Lower Var	162.97	36.65	3.7%	1	1341
Whole catchment	2872.42	121.47	2.1%	1	2607

