

R.B. Walimbe Retd. Chief Engineer Central Water Commission

River Basin and Economic Development

- Typical Stages of Development
- Increase in agricultural productivity, with the agricultural sector maintaining dominance in the economy
- Urbanization of the economy
- Diversification of the economy, with agriculture becoming only one of several industries
- Development of concern for urban social and environmental values

Requirement for New Planning Perspectives

- From project level to river basin scale
- From Static to Dynamic
- From short-term to long-term
- From single-purpose, single-objective to integrated multiple purpose and multiple objectives

Nonstructural Measures

- Water Measures
- Land Measures
- Implementation means
 Publicity ,Awareness, Technical
 Assistance, Legislation

Multiobjective Analysis

Suitable for analysing impacts in natural non monetary units Suitable when the objectives/Purposes are conflicting,

- Objective Quantification
- Formulation of Alternatives and
- Plan Selection

Formulation of Multiobjective Programming Problem

Maximize

$$\begin{split} &Z\left(x_{1},\,x_{2}\,,\,\ldots,x_{n}\right)\\ &\left[Z_{1}\left(x_{1},\,x_{2}\,,\,\ldots,x_{n}\right),Z_{2}\left(x_{1},\,x_{2}\,,\,\ldots,x_{n}\right)\right.\\ &\left.\ldots,Z_{p}\left(x_{1},\,x_{2}\,,\,\ldots,x_{n}\right)\right]\\ ⋐\ to\ g_{i}\left(x_{1},\,x_{2}\,,\,\ldots,x_{n}\right)\ \underline{<}\ 0,\ i=1,2\,,\ldots,m\\ ∧\ x_{j}\left(x_{1},\,x_{2}\,,\,\ldots,x_{n}\right)\ \underline{>}\ 0,\ j=1,2\,,\ldots,n \end{split}$$

Typical Two Objective Problem

Max
$$Z_1 (x_1, x_2) = 5 x_1 - 2 x_2$$

 $Z_2 (x_1, x_2) = -x_1 + 4 x_2$
Sub to $-x_1 + x_2 \le 3$
 $x_1 + x_2 \le 8$
 $x_1 \le 6$
 $x_2 \le 4$
and $x_1, x_2 \ge 0$

Feasible region represented in Decision space

Table 2.1

Extreme	X ₁	X_2	$Z_1 = 5 x_1 - 2 x_2$	$Z_2 = -x_1 + 4/X_2$
Point			X	
A	0	0	0	0
В	6	0	30	-6
C	6	2	26	2
D	4	4	12	12
/ E	1	4	-3	15
/ F	0	3	-6	12

Feasible region represented in Objective space

Techniques for generating Non-inferior Solutions

- The Weighting Method
 Max Z = ∑ wi Zi (x1, x2,....xn)
 sub to (x1, x2,....xn) ε Fd
 where wi is the weight attached to the ith objective function Zi
- Constraint Method

Solution by Constraint Method

